
VOLUME 2: Platform Initialization
Specification

Driver Execution Environment
Core Interface

Version 1.4 Errata A

3/15/2016

Platform Initialization Specification VOLUME 2 DXE Core Interface

ii 3/15/2016 Version 1.4 Errata A

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2006 - 2016 Unified EFI, Inc. All Rights Reserved.

Version 1.4 Errata A 3/15/2016 iii

Revision History

Revision Revision History Date

1.0 Initial public release. 08/21/06

1.0 errata Mantis tickets:
• M47 dxe_dispatcher_load_image_behavior

• M48 Make spec more consistent GUID & filename.

• M155 FV_FILE and FV_ONLY: Change subtype number back to
th:e original one.

• M171Remove 10 us lower bound restriction for the TickPeriod in
the Metronome

• M178 Remove references to tail in file header and made file
checksum for the data

• M183 Vol 1-Vol 5: Make spec more consistent.

• M192 Change PAD files to have an undefined GUID file name and
update all FV

10/29/07

1.1 Mantis tickets:
• M39 (Updates PCI Hostbridge & PCI Platform)

• M41 (Duplicate 167)

• M42 Add the definition of theDXE CIS Capsule AP & Variable AP

• M43 (SMbios)

• M46 (SMM error codes)

• M163 (Add Volume 4--SMM

• M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter
12)

• M179 (S3 boot script)

• M180 (PMI ECR)

• M195 (Remove PMI references from SMM CIS)

• M196 (disposable-section type to the FFS)

11/05/07

1.1
correction

Restore (missing) MP protocol 03/12/08

1.1 Errata Revises typographical errors and minor omissions--see Errata for
details

04/25/08

Platform Initialization Specification VOLUME 2 DXE Core Interface

iv 3/15/2016 Version 1.4 Errata A

1.1 Errata Mantis tickets
• 204 Stack HOB update 1.1errata

• 225 Correct references from
EFI_FIRMWARE_VOLUME_PROTOCOL to
EFI_FIRMWARE_VOLUME2_PROTOCOL

• 226 Remove references to Framework

• 227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

• 228 insert"typedef" missing from some typedefs in Volume 3

• 243 Define interface "EFI_PEI_FV_PPI" declaration in PI1.0
FfsFindNextVolume()

• 285 Time quality of service in S3 boot script poll operation

• 287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 -
return error language

• 290 PI Errata

• 305 Remove Datahub reference

• 336 SMM Control Protocol update

• 345 PI Errata

• 353 PI Errata

• 360 S3RestoreConfig description is missing

• 363 PI Volume 1 Errata

• 367 PCI Hot Plug Init errata

• 369 Volume 4 Errata

• 380 SMM Development errata

• 381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

01/13/09

1.1 Errata • 247 Clarification regarding use of dependency expression section
types with firmware volume image files

• 399 SMBIOS Protocol Errata

• 405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

• 422 TEMPORARY_RAM_SUPPORT_PPI is misnamed

• 428 Volume 5 PCI issue

• 430 Clarify behavior w/ the FV extended header

02/23/09

1.2 • 271 Support For Large Firmware Files And Firmware File
Sections

• 284 CPU I/O protocol update

• 286 Legacy Region protocol

• 289 Recovery API

• 292 PCD Specification Update

• 354 ACPI Manipulation Protocol

• 355 EFI_SIO_PROTOCOL Errata

• 365 UEFI Capsule HOB

• 382 IDE Controller Specification

• 385 Report Status Code Router Specification

• 386 Status Code Specification

01/19/09

Version 1.4 Errata A 3/15/2016 v

1.2 • 401 SMM Volume 4 issue

• 402 SMM PI spec issue w.r.t. CRC

• 407 Add LMA Pseudo-Register to SMM Save State Protocol

• 409 PCD_PROTOCOL Errata

• 411 Draft Errata, Volume 5, Section 8

• 412 Comment: PEI_S3_RESUME_PPI should be
EFI_PEI_S3_RESUME_PPI

• 414 Draft Chapter 7 Comments

• 415 Comment: Report Status Code Routers

• 416 EFI_CPU_IO_PROTOCOL2 Name should be
EFI_CPU_IO2_PROTOCOL

• 417 Volume 5, Chapter 4 & 5 order is reversed

• 423 Comment: Section 15.2.1 Formatting Issues vol5

• 424 Comments: Volume 5, Appendix A.1 formatting issues

• 425 Comment: Formatting in Section 6.1 of Volume 3

• 426 Comments: Volume 2

• 427 Comment: Volume 3, Section 6

• 433 Editorial issues in PI 1.2 draft

02/23/09

1.2 • 407 Comment: additional change to LMA Pseudo-Register

• 441 Comment: PI Volume 3, Incorrect Struct Declaration (esp
PCD_PPI)

• 455 Comment: Errata - Clarification of InstallPeiMemory()

• 465 Comment: Errata on PMI interface

• 466 Comment: Vol 4 EXTENDED_SAL_PROC definition

• 467 Comments: PI1.1 errata

• 480 Comment: FIX to PCD_PROTOCOL and PCD_PPI

05/13/09

Platform Initialization Specification VOLUME 2 DXE Core Interface

vi 3/15/2016 Version 1.4 Errata A

1.2 errata • 345 PI1.0 errata

• 468 Issues on proposed PI1.2 ACPI System Description Table
Protocol

• 492 Add Resource HOB Protectability Attributes

• 494 Vol. 2 Appendix A Clean up

• 495 Vol 1: update HOB reference

• 380 PI1.1 errata from SMM development

• 501 Clean Up SetMemoryAttributes() language Per Mantis 489
(from USWG)

• 502 Disk info

• 503 typo

• 504 remove support for fixed address resources

• 509 PCI errata – execution phase

• 510 PCI errata - platform policy

• 511 PIC TE Image clarification/errata

• 520 PI Errata

• 521Add help text for EFI_PCD_PROTOCOL for
GetNextTokenSpace

• 525 Itanium ESAL, MCA/INIT/PMI errata

• 526 PI SMM errata

• 529 PCD issues in Volume 3 of the PI1.2 Specification

• 541 Volume 5 Typo

• 543 Clarification around usage of FV Extended header

• 550 Naming conflicts w/ PI SMM

12/16/09

Version 1.4 Errata A 3/15/2016 vii

1.2 errata A • 363 PI volume 1 errata

• 365 UEFI Capsule HOB

• 381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO

• 482 One other naming inconsistency in the PCD PPI declaration

• 483 PCD Protocol / PPI function name synchronization.....

• 496 Boot mode description

• 497 Status Code additions

• 548 Boot firmware volume clarification

• 551 Name conflicts w/ Legacy region

• 552 MP services

• 553 Update text to PEI

• 554 update return code from PEI AllocatePages

• 555 Inconsistency in the S3 protocol

• 561 Minor update to PCD->SetPointer

• 565 CANCEL_CALL_BACK should be CANCEL_CALLBACK

• 569 Recovery: EFI_PEI_GET_NUMBER_BLOCK_DEVICES decl
has EFI_STATUS w/o return code & errror on stage 3 recovery
description

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP
(volume2) and SMM (volume 4)

• 581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

• 591ACPI Protocol Name collision

• 592 More SMM name conflicts

• 593 A couple of ISA I/O clarifications

• 594 ATA/ATAPI clarification

• 595 SMM driver entry point clarification

• 596 Clarify ESAL return codes

• 602 SEC->PEI hand-off update

• 604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

2/24/10

1.2 errata B • 628 ACPI SDT protocol errata

• 629 Typos in PCD GetSize()
• 630EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL service

clarification
• 631 System Management System Table (SMST) MP-related field

clarification

5/27/10

Platform Initialization Specification VOLUME 2 DXE Core Interface

viii 3/15/2016 Version 1.4 Errata A

1.2 Errata C • 550 Naming conflicts w/ PI SMM

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP
(volume2) and SMM (volume 4)

• 654 UEFI PI specific handle for SMBIOS is now available

• 688 Status Code errata

• 690 Clarify agent in IDE Controller chapter

• 691 SMM a priori file and SOR support

• 692 Clarify the SMM SW Register API

• 694 PEI Temp RAM PPI ambiguity

• 703 End of PEI phase PPI publication for the S3 boot mode case

• 706 GetPeiServicesTablePointer () changes for the ARM
architecture

• 714 PI Service Table Versions

• 717 PI Extended File Size Errata

• 718 PI Extended Header cleanup / Errata

• 730 typo in EFI_SMM_CPU_PROTOCOL.ReadSaveState()
return code

• ERROR: listed by mistake:737

• 738 Errata to Volume 2 of the PI1.2 specification

• 739 Errata for PI SMM Volume 4 Control protocol

• 742 Errata for SMBUS chapter in Volume 5

• 743 Errata - PCD_PPI declaration

• 745 Errata – PI Firmware Section declarations

• 746 Errata - PI status code

• 747 Errata - Text for deprecated HOB

• 752 Binary Prefix change

• ERROR: listed by mistake: 753

• 764 PI Volume 4 SMM naming errata

• 775 errata/typo in
EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT, Volume 3

• 781 S3 Save State Protocol Errata

• 782 Format Insert(), Compare() and Label() as for Write()

• 783 TemporaryRamMigration Errata

• 784 Typos in status code definitions

• 787 S3 Save State Protocol Errata 2

• 810 Set Memory Attributes return code clarification

• 811 SMBIOS API Clarification

• 814 PI SMBIOS Errata

• 821Location conflict for
EFI_RESOURCE_ATTRIBUTE_xxx_PROTECTABLE #defines

• 823 Clarify max length of SMBIOS Strings in SMBIOS Protocol

• 824 EFI_SMM_SW_DISPATCH2_PROTOCOL.Register() Errata

• 837 ARM Vector table can not support arbitrary 32-bit address

• 838 Vol 3 EFI_FVB2_ALIGNMNET_512K should be
EFI_FVB2_ALIGNMENT_512K

• 840 Vol 3 Table 5 Supported FFS Alignments contains values not
supported by FFS

• 844 correct references to Platform Initialization Hand-Off Block
Specification

10/27/11

Version 1.4 Errata A 3/15/2016 ix

1.2.1 • 527 PI Volume 2 DXE Security Architecture Protocol (SAP)
clarification

• 562 Add SetMemoryCapabilities to GCD interface

• 719 End of DXE event

• 731 Volume 4 SMM - clarify the meaning of NumberOfCpus

• 737 Remove SMM Communication ACPI Table definition .

• 753 SIO PEI and UEFI-Driver Model Architecture

• 769 Signed PI sections

• 813 Add a new EFI_GET_PCD_INFO_PROTOCOL and
EFI_GET_PCD_INFO_PPI instance.

• 818 New SAP2 return code

• 822 Method to disable Temporary RAM when Temp RAM
Migration is not required

• 833 Method to Reserve Interrupt and Exception Vectors

• 839 Add support for weakly aligned FVs

• 892 EFI_PCI_ENUMERATION_COMPLETE_GUID Protocol

• 894 SAP2 Update

• 895 Status Code Data Structures Errata

• 902 Errata on signed firmware volume/file

• 903 SmiManage Update

• 906 Volume 3 errata - Freeform type

• 916 Service table revisions

05/02/12

1.2.1 Errata
A

• 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the
GCD

• 936 Clarify memory usage in PEI on S3

• 937 SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958 Omissions in PI1.2.1 integration for M816 and M894

• 969 Vol 1 errata: TE Header parameters

10/26/12

1.3 • 945 Integrated Circuit (I2C) Bus Protocol

• 998 PI Status Code additions

• 999 PCI enumeration complete GUID

• 1005 NVMe Disk Info guid

• 1006 Security Ppi Fixes

• 1025 PI table revisions

3/29/13

Platform Initialization Specification VOLUME 2 DXE Core Interface

x 3/15/2016 Version 1.4 Errata A

1.3 Errata • 1041 typo in HOB Overview

• 1067 PI1.3 Errata for SetBootMode

• 1068 Updates to PEI Service table/M1006

• 1069 SIO Errata - pnp end node definition

• 1070 Typo in SIO chapter

• 1072 Errata – SMM register protocol notify clarification/errata

• 1093 Extended File Size Errata

• 1095 typos/errata

• 1097 PI SMM GPI Errata

• 1098 Errata on I2C IO status code

• 1099 I2C Protocol stop behavior errata

• 1104 ACPI System Description Table Protocol Errata

• 1105 ACPI errata - supported table revision

• 1177 PI errata - make CPU IO optional

• 1178 errata - allow PEI to report an additional memory type

• 1283 Errata - clarify sequencing of events

2/19/15

1.4 • 1210 Adding persistence attribute to GCD

• 1235 PI.Next Feature - no execute support

• 1236 PI.Next feature - Graphics PPI

• 1237 PI.Next feature - add reset2 PPI

• 1239 PI.Next feature - Disk Info Guid UFS

• 1240 PI.Next feature - Recovery Block IO PPI - UFS

• 1259 PI.Next feature - MP PPI

• 1273 PI.Next feature - capsule PPI

• 1274 Recovery Block I/O PPI Update

• 1275 GetMemoryMap Update

• 1277 PI1.next feature - multiple CPU health info

• 1278 PI1.next - Memory relative reliability definition

• 1305 PI1.next - specification number encoding

• 1331 Remove left-over Boot Firmware Volume references in the
SEC Platform Information PPI

• 1366 PI 1.4 draft - M1277 issue BIST / CPU. So health record
needs to be indexed / CPU.

2/20/15

Version 1.4 Errata A 3/15/2016 xi

Specification Volumes
The Platform Initialization Specification is divided into volumes to enable logical organization, future growth, and
printing convenience. The Platform Initialization Specification consists of the following volumes:

VOLUME 1: Pre-EFI Initialization Core Interface

VOLUME 2: Driver Execution Environment Core Interface

VOLUME 3: Shared Architectural Elements

VOLUME 4: System Management Mode

VOLUME 5: Standards

Each volume should be viewed in the context of all other volumes, and readers are strongly encouraged to consult the
entire specification when researching areas of interest. Additionally, a single-file version of the Platform Initialization
Specification is available to aid search functions through the entire specification.

1.4 Errata A • 1596 Mantis1489 GCD issue

• 1574 Fix artificial limitation in the PCD.SetSku support

• 1565 Update status code to include AArch64 exception error
codes

• 1564 SMM Software Dispatch Protocol Errata

• 1562 Errata to remove statement from DXE vol about PEI
dispatch behavior

• 1561 Errata to provide Equivalent of DXE-CIS Mantis 247 for the
PEI-CIS

• 1532 Allow S3 Resume without having installed permanent
memory (via InstallPeiMemory)

• 1530 errata on dxe report status code

• 1529 address space granularity errata

• 1525 PEI Services Table Retrieval for AArch64

• 1515 EFI_PEIM_NOTIFY_ENTRY_POINT return values are
undefined

• 1497 Fixing language in SMMStartupThisAP

• 1489 GCD Conflict errata

• 1485 Minor Errata in SMM Vo2 description of SMMStartupThisAP

• 1397 PEI 1.4 specification revision errata

• 1394 Errata to Relax requirements on CPU rendez in SEC

• 1351 EndOfDxe and SmmReadyToLock

• 1322 Minor Updates to handle Asynchronous CPU Entry Into
SMM

3/15/16

Platform Initialization Specification VOLUME 2 DXE Core Interface

xii 3/15/2016 Version 1.4 Errata A

Contents

1
Introduction... 1
1.1 Overview ... 1
1.2 Organization of the DXE CIS .. 1
1.3 Target Audience.. 2
1.4 Conventions Used in this Document... 2

1.4.1 Data Structure Descriptions .. 3
1.4.2 Protocol Descriptions .. 3
1.4.3 Procedure Descriptions... 4
1.4.4 Instruction Descriptions... 4
1.4.5 Pseudo-Code Conventions ... 4
1.4.6 Typographic Conventions ... 5

1.5 Requirements.. 5
1.6 Conventions used in this document .. 7

1.6.1 Number formats .. 7
1.6.2 Binary prefixes .. 7

2
Overview.. 9
2.1 Driver Execution Environment (DXE) Phase .. 9
2.2 UEFI System Table... 10

2.2.1 Overview ... 10
2.2.2 UEFI Boot Services Table... 11
2.2.3 UEFI Runtime Services Table... 11
2.2.4 DXE Services Table .. 12

2.3 DXE Foundation.. 12
2.4 DXE Dispatcher .. 13
2.5 DXE Drivers .. 13
2.6 DXE Architectural Protocols.. 13
2.7 Runtime Protocol .. 14

3
Boot Manager.. 15
3.1 Boot Manager ... 15

4
UEFI System Table ... 17
4.1 DXE Services Table.. 17

DXE_SERVICES... 17
4.2 UEFI Image Entry Point Examples .. 20

4.2.1 UEFI Application Example .. 20
4.2.2 Non-UEFI Driver Model Example (Resident in Memory) 22
4.2.3 Non-UEFI Driver Model Example (Nonresident in Memory) 23

Version 1.4 Errata A 3/15/2016 xiii

4.2.4 UEFI Driver Model Example.. 24
4.2.5 UEFI Driver Model Example (Unloadable) .. 25
4.2.6 UEFI Driver Model Example (Multiple Instances) ... 26

5
Services - Boot Services.. 29
5.1 Extensions to UEFI Boot Service Event Usage .. 29

5.1.1 CreateEvent .. 29
5.1.2 Pre-Defined Event Groups .. 29
5.1.3 Additions to LoadImage() .. 30

6
Runtime Capabilities .. 35
6.1 Additional Runtime Protocol.. 35

6.1.1 Status Code Services.. 35

7
Services - DXE Services .. 37
7.1 Introduction ... 37
7.2 Global Coherency Domain Services ... 37

7.2.1 Global Coherency Domain (GCD) Services Overview.. 37
7.2.2 GCD Memory Resources .. 37
7.2.3 GCD I/O Resources .. 39
7.2.4 Global Coherency Domain Services ... 40

AddMemorySpace() .. 42
AllocateMemorySpace() .. 45
FreeMemorySpace() ... 48
RemoveMemorySpace() ... 50
GetMemorySpaceDescriptor()... 52
SetMemorySpaceAttributes() .. 54
SetMemorySpaceCapabilities()... 56
GetMemorySpaceMap() .. 58
AddIoSpace() .. 60
AllocateIoSpace() .. 62
FreeIoSpace() ... 65
RemoveIoSpace() ... 67
GetIoSpaceDescriptor()... 69
GetIoSpaceMap() .. 71

7.3 Dispatcher Services .. 73
Dispatch() .. 74
Schedule() ... 75
Trust().. 76
ProcessFirmwareVolume().. 77

8
Protocols - Device Path Protocol.. 79
8.1 Introduction ... 79
8.2 Firmware Volume Media Device Path... 79

Platform Initialization Specification VOLUME 2 DXE Core Interface

xiv 3/15/2016 Version 1.4 Errata A

8.3 Firmware File Media Device Path ... 80

9
DXE Foundation.. 81
9.1 Introduction ... 81
9.2 Hand-Off Block (HOB) List .. 81
9.3 DXE Foundation Data Structures.. 83
9.4 Required DXE Foundation Components... 84
9.5 Handing Control to DXE Dispatcher ... 86
9.6 DXE Foundation Entry Point ... 87

9.6.1 DXE_ENTRY_POINT.. 87
DXE_ENTRY_POINT.. 87

9.7 Dependencies ... 88
9.7.1 UEFI Boot Services Dependencies... 88
9.7.2 UEFI Runtime Services Dependencies... 91
9.7.3 DXE Services Dependencies .. 93

9.8 HOB Translations.. 94
9.8.1 HOB Translations Overview.. 94
9.8.2 PHIT HOB ... 94
9.8.3 CPU HOB.. 95
9.8.4 Resource Descriptor HOBs... 95
9.8.5 Firmware Volume HOBs ... 96
9.8.6 Memory Allocation HOBs .. 96
9.8.7 GUID Extension HOBs.. 97

10
DXE Dispatcher... 99
10.1 Introduction ... 99
10.2 Requirements.. 99
10.3 The A Priori File .. 100

EFI_APRIORI_GUID... 101
10.4 Firmware Volume Image Files .. 101
10.5 Dependency Expressions ... 102
10.6 Dependency Expressions Overview ... 102
10.7 Dependency Expression Instruction Set ... 102

BEFORE.. 104
AFTER... 105
PUSH .. 106
AND... 107
OR... 108
NOT... 109
TRUE... 110
FALSE... 111
END... 112
SOR... 113

10.8 Dependency Expression with No Dependencies .. 114
10.9 Empty Dependency Expressions .. 114
10.10 Dependency Expression Reverse Polish Notation (RPN) .. 116

Version 1.4 Errata A 3/15/2016 xv

10.11 DXE Dispatcher State Machine .. 116
10.12 Example Orderings ... 118
10.13 Security Considerations .. 121

11
DXE Drivers... 123
11.1 Introduction ... 123
11.2 Classes of DXE Drivers .. 123

11.2.1 Early DXE Drivers ... 123
11.2.2 DXE Drivers that Follow the UEFI Driver Model ... 124
11.2.3 Additional Classifications .. 124

12
DXE Architectural Protocols ... 125
12.1 Introduction ... 125
12.2 Boot Device Selection (BDS) Architectural Protocol ... 127

EFI_BDS_ARCH_PROTOCOL... 127
EFI_BDS_ARCH_PROTOCOL.Entry() ... 128

12.3 CPU Architectural Protocol ... 129
EFI_CPU_ARCH_PROTOCOL... 129
EFI_CPU_ARCH_PROTOCOL.FlushDataCache()... 132
EFI_CPU_ARCH_PROTOCOL.EnableInterrupt()... 134
EFI_CPU_ARCH_PROTOCOL.DisableInterrupt() .. 135
EFI_CPU_ARCH_PROTOCOL.GetInterruptState().. 136
EFI_CPU_ARCH_PROTOCOL.Init()... 137
EFI_CPU_ARCH_PROTOCOL.RegisterInterruptHandler() 138
EFI_CPU_ARCH_PROTOCOL.GetTimerValue() ... 140
EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes().................................... 142

12.4 Metronome Architectural Protocol... 144
EFI_METRONOME_ARCH_PROTOCOL... 144
EFI_METRONOME_ARCH_PROTOCOL.WaitForTick() 145

12.5 Monotonic Counter Architectural Protocol .. 146
EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL 146

12.6 Real Time Clock Architectural Protocol .. 147
EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL.. 147

12.7 Reset Architectural Protocol ... 148
EFI_RESET_ARCH_PROTOCOL .. 148

12.8 Runtime Architectural Protocol ... 149
EFI_RUNTIME_ARCH_PROTOCOL.. 149

12.9 Security Architectural Protocols .. 154
12.9.1 Security Architectural Protocol .. 154

EFI_SECURITY_ARCH_PROTOCOL .. 154
EFI_SECURITY_ARCH_PROTOCOL.FileAuthenticationState()...................... 156

12.9.2 Security2 Architectural Protocol ... 157
EFI_SECURITY2_ARCH_PROTOCOL.FileAuthentication() 159

12.10 Timer Architectural Protocol.. 160
EFI_TIMER_ARCH_PROTOCOL ... 160
EFI_TIMER_ARCH_PROTOCOL.RegisterHandler().. 162

Platform Initialization Specification VOLUME 2 DXE Core Interface

xvi 3/15/2016 Version 1.4 Errata A

EFI_TIMER_ARCH_PROTOCOL.SetTimerPeriod()... 164
EFI_TIMER_ARCH_PROTOCOL.GetTimerPeriod() .. 165
EFI_TIMER_ARCH_PROTOCOL.GenerateSoftInterrupt() 166

12.11 Variable Architectural Protocol.. 167
EFI_VARIABLE_ARCH_PROTOCOL... 167

12.12 Variable Write Architectural Protocol ... 168
EFI_VARIABLE_WRITE_ARCH_PROTOCOL ... 168

12.13 EFI Capsule Architectural Protocol ... 168
EFI_CAPSULE_ARCH_PROTOCOL.. 168

12.14 Watchdog Timer Architectural Protocol ... 169
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.. 169
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.RegisterHandler() 171
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.SetTimerPeriod() 173
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.GetTimerPeriod() 174

13
DXE Boot Services Protocol.. 175
13.1 Overview ... 175
13.2 Conventions and Abbreviations .. 175
13.3 MP Services Protocol Overview.. 175
13.4 MP Services Protocol.. 176

EFI_MP_SERVICES_PROTOCOL .. 176
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors() 178
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo().................................... 180
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() ... 183
EFI_MP_SERVICES_PROTOCOL.StartupThisAP() .. 187
EFI_MP_SERVICES_PROTOCOL.SwitchBSP().. 190
EFI_MP_SERVICES_PROTOCOL.EnableDisableAP().................................... 192
EFI_MP_SERVICES_PROTOCOL.WhoAmI().. 194

14
DXE Runtime Protocols ... 197
14.1 Introduction ... 197
14.2 Status Code Runtime Protocol.. 197

EFI_STATUS_CODE_ PROTOCOL... 197
EFI_STATUS_CODE_PROTOCOL.ReportStatusCode() 198

15
Dependency Expression Grammar... 203
15.1 Dependency Expression Grammar... 203
15.2 Example Dependency Expression BNF Grammar.. 203
15.3 Sample Dependency Expressions .. 204

 Appendix A
Error Codes .. 207

 Appendix B
GUID Definitions ... 209
B.1DXE Services Table GUID ... 209

Version 1.4 Errata A 3/15/2016 xvii

B.2HOB List GUID ... 209

Platform Initialization Specification VOLUME 2 DXE Core Interface

xviii 3/15/2016 Version 1.4 Errata A

Figures

Figure 1. PI Architecture Firmware Phases .. 10
Figure 2. GCD Memory State Transitions... 39
Figure 3. GCD I/O State Transitions ... 40
Figure 4. HOB List .. 82
Figure 5. UEFI System Table and Related Components.. 83
Figure 6. DXE Foundation Components ... 84
Figure 7. DXE Driver States.. 117
Figure 8. Sample Firmware Volume ... 119
Figure 9. DXE Architectural Protocols .. 126

Version 1.4 Errata A 3/15/2016 xix

Tables

Table 1. Organization of the DXE CIS .. 2
Table 2. SI prefixes ... 7
Table 3. Binary prefixes .. 8
Table 4. UEFI Boot Services... 11
Table 5. UEFI Runtime Services... 12
Table 6. DXE Services.. 12
Table 7. DXE Architectural Protocols.. 14
Table 8. Status Codes Runtime Protocol .. 14
Table 9. Supported Subsystem Values... 32
Table 10. Status Code Runtime Protocol.. 35
Table 11. Global Coherency Domain Boot Type Services.. 41
Table 12. Dispatcher Boot Type Services... 73
Table 13. Firmware Volume Media Device Path... 79
Table 14. Firmware Volume Device Node Text Representation... 79
Table 15. Firmware File Media Device Path ... 80
Table 16. Firmware Volume File Device Node Text Representation 80
Table 17. Boot Service Dependencies.. 88
Table 18. Runtime Service Dependencies.. 91
Table 19. DXE Service Dependencies.. 93
Table 20. Resource Descriptor HOB to GCD Type Mapping.. 96
Table 21. Dependency Expression Opcode Summary ... 103
Table 22. BEFORE Instruction Encoding.. 104
Table 23. AFTER Instruction Encoding... 105
Table 24. PUSH Instruction Encoding .. 106
Table 25. AND Instruction Encoding... 107
Table 26. OR Instruction Encoding ... 108
Table 27. NOT Instruction Encoding... 109
Table 28. TRUE Instruction Encoding... 110
Table 29. FALSE Instruction Encoding ... 111
Table 30. END Instruction Encoding... 112
Table 31. SOR Instruction Encoding... 113
Table 32. DXE Dispatcher Orderings.. 120
Table 33. StatusFlag bits ... 181

Platform Initialization Specification VOLUME 2 DXE Core Interface

xx 3/15/2016 Version 1.4 Errata A

Version 1.4 Errata A 3/15/2016 1

1
Introduction

1.1 Overview
This specification defines the core code and services that are required for an implementation of the
driver execution environment (DXE) phase of the Unified Extensible Firmware Interface (UEFI)
Foundation. This DXE core interface specification (CIS) does the following:

• Describes the basic components of the DXE phase.

• Provides code definitions for services and functions that are architecturally required by the
Unified Extensible Firmware Interface Specification (UEFI 2.0 specification).

• Presents a set of backward-compatible extensions to the UEFI 2.0 specification.

• Describes the machine preparation that is required for subsequent phases of firmware execution.

See “Organization of the DXE CIS” for more information.

1.2 Organization of the DXE CIS
This DXE core interface specification (CIS) is organized as shown in Table 1. Because the DXE
Foundation is just one component of a PI Architecture-based firmware solution, there are a number
of additional specifications that are referred to throughout this document.

Platform Initialization Specification VOLUME 2 DXE Core Interface

2 3/15/2016 Version 1.4 Errata A

Table 1. Organization of the DXE CIS

1.3 Target Audience
This document is intended for the following readers:

• IHVs and OEMs who will be implementing DXE drivers that are stored in firmware volumes.

• BIOS developers, either those who create general-purpose BIOS and other firmware products or
those who modify these products for use in various vendor architecture–based products.

1.4 Conventions Used in this Document
This document uses the typographic and illustrative conventions described below.

Book Description

“Overview” on page 9 Describes the major components of DXE, including the boot
manager, firmware core, protocols, and requirements.

“Boot Manager” on page 15 Describes the boot manager, which is used to load UEFI drivers,
UEFI applications, and UEFI OS loaders.

“UEFI System Table” on page 17 Describes the DXE Service table.

“Services - Boot Services” on
page 29

Describes specific event types for DXE Foundation.

“Runtime Capabilities” on page 35 Contains definitions of a runtime protocol for status code support.

“Services - DXE Services” on
page 37

Contains definitions for the fundamental services that are present in
a DXE-compliant system before an OS is booted.

“Protocols - Device Path Protocol” on
page 79

Defines the device path extensions required by the DXE Foundation.

“DXE Foundation” on page 81 Describes the DXE Foundation that consumes HOBs, Firmware
Volumes, and DXE Architectural Protocols to produce an UEFI
System Table, UEFI Boot Services, UEFI Runtime Services, and the
DXE Services.

“DXE Dispatcher” on page 99 Describes the DXE Dispatcher that is responsible for loading and
executing DXE drivers from Firmware Volumes.

“DXE Drivers” on page 123 Describes the different classes of DXE drivers that may be stored in
Firmware Volumes.

“DXE Architectural Protocols” on
page 125

Describes the Architectural Protocols that are produced by DXE
drivers. They are also consumed by the DXE Foundation to produce
the UEFI Boot Services, UEFI Runtime Services, and DXE Services.

“DXE Runtime Protocols” on
page 197

Lists success, error, and warning codes returned by DXE and UEFI
interfaces.

“Dependency Expression Grammar”
on page 203

Describes the BNF grammar for a tool that can convert a text file
containing a dependency expression into a dependency section of a
DXE driver stored in a Firmware Volume.

Introduction

Version 1.4 Errata A 3/15/2016 3

1.4.1 Data Structure Descriptions
Supported processors are “little endian” machines. This distinction means that the low-order byte of
a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest
address. Some supported processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification will use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this data
structure.

1.4.2 Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Platform Initialization Specification VOLUME 2 DXE Core Interface

4 3/15/2016 Version 1.4 Errata A

1.4.3 Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.4.4 Instruction Descriptions
A dependency expression instruction description generally has the following format:

InstructionName The formal name of the instruction.

Syntax: A brief description of the instruction.

Description: A description of the functionality provided by the instruction
accompanied by a table that details the instruction encoding.

Operation: Details the operations performed on operands.

Behaviors and Restrictions:
An item-by-item description of the behavior of each operand
involved in the instruction and any restrictions that apply to the
operands or the instruction.

1.4.5 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding to
the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Introduction

Version 1.4 Errata A 3/15/2016 5

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Unified Extensible Firmware Interface Specification (UEFI 2.0
specification).

1.4.6 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new term
or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code segments
use a BOLD Monospace typeface with a dark red color. These code
listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red color
but is not bold or italicized indicate pseudo code or example code. These
code segments typically occur in one or more separate paragraphs.

1.5 Requirements
This document is an architectural specification that is part of the Platform Initialization Architecture
(PI Architecture) family of specifications defined and published by the Unified EFI Forum. The
primary intent of the PI Architecture is to present an interoperability surface for firmware
components that may originate from different providers. As such, the burden to conform to this

Platform Initialization Specification VOLUME 2 DXE Core Interface

6 3/15/2016 Version 1.4 Errata A

specification falls both on the producer and the consumer of facilities described as part of the
specification.

In general, it is incumbent on the producer implementation to ensure that any facility that a
conforming consumer firmware component might attempt to use is present in the implementation.
Equally, it is incumbent on a developer of a firmware component to ensure that its implementation
relies only on facilities that are defined as part of the PI Architecture. Maximum interoperability is
assured when collections of conforming components are designed to use only the required facilities
defined in the PI Architecture family of specifications.

As this document is an architectural specification, care has been taken to specify architecture in
ways that allow maximum flexibility in implementation for both producer and consumer. However,
there are certain requirements on which elements of this specification must be implemented to
ensure a consistent and predictable environment for the operation of code designed to work with the
architectural interfaces described here.

For the purposes of describing these requirements, the specification includes facilities that are
required, such as interfaces and data structures, as well as facilities that are marked as optional.

In general, for an implementation to be conformant with this specification, the implementation must
include functional elements that match in all respects the complete description of the required
facility descriptions presented as part of the specification. Any part of the specification that is not
explicitly marked as “optional” is considered a required facility.

Where parts of the specification are marked as “optional,” an implementation may choose to provide
matching elements or leave them out. If an element is provided by an implementation for a facility,
then it must match in all respects the corresponding complete description.

In practical terms, this means that for any facility covered in the specification, any instance of an
implementation may only claim to conform if it follows the normative descriptions completely and
exactly. This does not preclude an implementation that provides additional functionality, over and
above that described in the specification. Furthermore, it does not preclude an implementation from
leaving out facilities that are marked as optional in the specification.

By corollary, modular components of firmware designed to function within an implementation that
conforms to the PI Architecture are conformant only if they depend only on facilities described in
this and related PI Architecture specifications. In other words, any modular component that is free of
any external dependency that falls outside of the scope of the PI Architecture specifications is
conformant. A modular component is not conformant if it relies for correct and complete operation
upon a reference to an interface or data structure that is neither part of its own image nor described in
any PI Architecture specifications.

It is possible to make a partial implementation of the specification where some of the required
facilities are not present. Such an implementation is non-conforming, and other firmware
components that are themselves conforming might not function correctly with it. Correct operation
of non-conforming implementations is explicitly out of scope for the PI Architecture and this
specification.

Introduction

Version 1.4 Errata A 3/15/2016 7

1.6 Conventions used in this document

1.6.1 Number formats
A binary number is represented in this standard by any sequence of digits consisting of only the
Western-Arabic numerals 0 and 1 immediately followed by a lower-case b (e.g., 0101b).
Underscores or spaces may be included between characters in binary number representations to
increase readability or delineate field boundaries (e.g., 0 0101 1010b or 0_0101_1010b).

A hexadecimal number is represented in this standard by 0x preceding any sequence of digits
consisting of only the Western-Arabic numerals 0 through 9 and/or the upper-case English letters A
through F (e.g., 0xFA23). Underscores or spaces may be included between characters in
hexadecimal number representations to increase readability or delineate field boundaries (e.g., 0xB
FD8C FA23 or 0xB_FD8C_FA23).

 A decimal number is represented in this standard by any sequence of digits consisting of only the
Arabic numerals 0 through 9 not immediately followed by a lower-case b or lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers:

• the decimal separator (i.e., separating the integer and fractional portions of the number) is a
period;

• the thousands separator (i.e., separating groups of three digits in a portion of the number) is a
comma;

• the thousands separator is used in the integer portion and is not used in the fraction portion of a
number.

1.6.2 Binary prefixes
This standard uses the prefixes defined in the International System of Units (SI) (see http://
www.bipm.org/en/si/si_brochure/chapter3/prefixes.html) for values that are powers of ten.

Table 2. SI prefixes

This standard uses the binary prefixes defined in ISO/IEC 80000-13 Quantities and units -- Part 13:
Information science and technology and IEEE 1514 Standard for Prefixes for Binary Multiples for
values that are powers of two.

Factor Factor Name Symbol

103 1,000 kilo K

106 1,000,000 mega M

109 1,000,000,000 giga G

http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html
http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html

Platform Initialization Specification VOLUME 2 DXE Core Interface

8 3/15/2016 Version 1.4 Errata A

Table 3. Binary prefixes

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

Factor Factor Name Symbol

210 1,024 kibi Ki

220 1,048,576 mebi Mi

230 1,073,741,824 gibi Gi

Version 1.4 Errata A 3/15/2016 9

2
Overview

2.1 Driver Execution Environment (DXE) Phase
The Driver Execution Environment (DXE) phase is where most of the system initialization is
performed. Pre-EFI Initialization (PEI), the phase prior to DXE, is responsible for initializing
permanent memory in the platform so that the DXE phase can be loaded and executed. The state of
the system at the end of the PEI phase is passed to the DXE phase through a list of position-
independent data structures called Hand-Off Blocks (HOBs). HOBs are described in detail in
Volume 3.

There are several components in the DXE phase:

• “DXE Foundation”

• “DXE Dispatcher”

• A set of “DXE Drivers”

The DXE Foundation produces a set of Boot Services, Runtime Services, and DXE Services. The
DXE Dispatcher is responsible for discovering and executing DXE drivers in the correct order. The
DXE drivers are responsible for initializing the processor, chipset, and platform components as well
as providing software abstractions for system services, console devices, and boot devices. These
components work together to initialize the platform and provide the services required to boot an
operating system. The DXE phase and Boot Device Selection (BDS) phases work together to
establish consoles and attempt the booting of operating systems. The DXE phase is terminated when
an operating system is successfully booted. The DXE Foundation is composed of boot services code,
so no code from the DXE Foundation itself is allowed to persist into the OS runtime environment.
Only the runtime data structures allocated by the DXE Foundation and services and data structured
produced by runtime DXE drivers are allowed to persist into the OS runtime environment.

Figure 1 shows the phases that a platform with PI Architecture firmware will execute.

Platform Initialization Specification VOLUME 2 DXE Core Interface

10 3/15/2016 Version 1.4 Errata A

Figure 1. PI Architecture Firmware Phases

In a PI Architecture firmware implementation, the phase executed prior to DXE is PEI. This
specification covers the transition from the PEI to the DXE phase, the DXE phase, and the DXE
phase’s interaction with the BDS phase. The DXE phase does not require a PEI phase to be
executed. The only requirement for the DXE phase to execute is the presence of a valid HOB list.
There are many different implementations that can produce a valid HOB list for the DXE phase to
execute. The PEI phase in a PI Architecture firmware implementation is just one of many possible
implementations.

2.2 UEFI System Table

2.2.1 Overview
The UEFI System Table is passed to every executable component in the DXE phase. The UEFI
System Table contains a pointer to the following:

• “UEFI Boot Services Table”

• “UEFI Runtime Services Table”

It also contains pointers to the console devices and their associated I/O protocols. In addition, the
UEFI System Table contains a pointer to the UEFI Configuration Table, and this table contains a list
of GUID/pointer pairs. The UEFI Configuration Table may include tables such as the “DXE
Services Dependencies” on page 93, HOB list, ACPI table, SMBIOS table, and SAL System table.

Overview

Version 1.4 Errata A 3/15/2016 11

The UEFI Boot Services Table contains services to access the contents of the handle database. The
handle database is where protocol interfaces produced by drivers are registered. Other drivers can
use the UEFI Boot Services to look up these services produced by other drivers.

All of the services available in the DXE phase may be accessed through a pointer to the UEFI
System Table.

2.2.2 UEFI Boot Services Table
Table 4 provides a summary of the services that are available through the UEFI Boot Services Table.
These services are described in detail in the UEFI 2.0 specification. This DXE CIS makes a few
minor, backward-compatible extensions to these services.

Table 4. UEFI Boot Services

2.2.3 UEFI Runtime Services Table
Table 5 provides a summary of the services that are available through the UEFI Runtime Services
Table. These services are described in detail in the UEFI 2.0 specification. One additional runtime
service, Status Code Services, is described in this specification.

UEFI Boot Services Description

Task Priority Provides services to increase or decrease the current task priority level. This
can be used to implement simple locks and to disable the timer interrupt for
short periods of time. These services depend on the “CPU Architectural
Protocol” on page 129.

Memory Provides services to allocate and free pages in 4 KiB increments and allocate
and free pool on byte boundaries. It also provides a service to retrieve a map
of all the current physical memory usage in the platform.

Event and Timer Provides services to create events, signal events, check the status of events,
wait for events, and close events. One class of events is timer events, and
that class supports periodic timers with variable frequencies and one-shot
timers with variable durations. These services depend on the “CPU
Architectural Protocol” on page 129, the “Timer Architectural Protocol” on
page 160, the “Metronome Architectural Protocol” on page 144, and the
“Watchdog Timer Architectural Protocol” on page 169.

Protocol Handler Provides services to add and remove handles from the handle database. It
also provides services to add and remove protocols from the handles in the
handle database. Additional services are available that allow any component
to lookup handles in the handle database, and open and close protocols in the
handle database.

Image Provides services to load, start, exit, and unload images using the PE/COFF
image format. These services use the services of the “Security Architectural
Protocols” on page 154 if it is present.

Driver Support Provides services to connect and disconnect drivers to devices in the platform.
These services are used by the BDS phase to either connect all drivers to all
devices, or to connect only the minimum number of drivers to devices required
to establish the consoles and boot an operating system. The minimal connect
strategy is one possible mechanism to reduce boot time.

Platform Initialization Specification VOLUME 2 DXE Core Interface

12 3/15/2016 Version 1.4 Errata A

Table 5. UEFI Runtime Services

2.2.4 DXE Services Table
Table 6 provides a summary of the services that are available through the DXE Services Table.
These are new services that are available in boot service time and are required only by the DXE
Foundation and DXE drivers.

Table 6. DXE Services

2.3 DXE Foundation
The DXE Foundation is a boot service image that is responsible for producing the following:

• UEFI Boot Services

• UEFI Runtime Services

• DXE Services

The DXE Foundation consumes a HOB list and the services of the DXE Architectural Protocols to
produce the full complement of UEFI Boot Services, UEFI Runtime Services, and DXE Services.
The HOB list is described in detail in the Volume 3.

The DXE Foundation is an implementation of UEFI. The DXE Foundation defined in this
specification is backward compatible with the UEFI 2.0 specification. As a result, both the DXE
Foundation and DXE drivers share many of the attributes of UEFI images. Because this
specification makes extensions to the standard UEFI interfaces, DXE images will not be functional

UEFI Runtime Services Description

Variable Provides services to look up, add, and remove environment variables from
nonvolatile storage. These services depend on the Variable Architectural
Protocol and the Variable Write Architectural Protocol.

Real Time Clock Provides services to get and set the current time and date. It also provides
services to get and set the time and date of an optional wake-up timer.
These services depend on the Real Time Clock Architectural Protocol.

Reset Provides services to shut down or reset the platform. These services
depend on the Reset Architectural Protocol.

Virtual Memory Provides services that allow the runtime DXE components to be converted
from a physical memory map to a virtual memory map. These services can
only be called once in physical mode. Once the physical to virtual
conversion has been performed, these services cannot be called again.
These services depend on the Runtime Architectural Protocol.

DXE Services Description

Global Coherency
Domain

Provides services to manage I/O resources, memory-mapped I/O resources,
and system memory resources in the platform. These services are used to
dynamically add and remove these resources from the processor’s global
coherency domain.

Dispatcher Provides services to manage DXE drivers that are being dispatched by the
DXE Dispatcher.

Overview

Version 1.4 Errata A 3/15/2016 13

on UEFI systems that are not compliant with this DXE CIS. However, UEFI images must be
functional on all UEFI-compliant systems including those that are compliant with the DXE CIS.

2.4 DXE Dispatcher
The DXE Dispatcher is one component of the DXE Foundation. This component is required to
discover DXE drivers stored in firmware volumes and execute them in the proper order. The proper
order is determine by a combination of an a priori file that is optionally stored in the firmware
volume and the dependency expressions that are part of the DXE drivers. The dependency
expression tells the DXE Dispatcher the set of services that a particular DXE driver requires to be
present for the DXE driver to execute. The DXE Dispatcher does not allow a DXE driver to execute
until all of the DXE driver’s dependencies have been satisfied. After all of the DXE drivers have
been loaded and executed by the DXE Dispatcher, control is handed to the BDS Architectural
Protocol that is responsible for implementing a boot policy that is compliant with the UEFI Boot
Manager described in the UEFI 2.0 specification.

2.5 DXE Drivers
The DXE drivers are required to initialize the processor, chipset, and platform. They are also
required to produce the DXE Architectural Protocols and any additional protocol services required
to produce I/O abstractions for consoles and boot devices.

2.6 DXE Architectural Protocols
Table 7 provides a summary of the DXE Architectural Protocols. The DXE Foundation is abstracted
from the platform through the DXE Architectural Protocols. The DXE Architectural Protocols
manifest the platform-specific components of the DXE Foundation. DXE drivers that are loaded
and executed by the DXE Dispatcher component of the DXE Foundation must produce these
protocols.

Platform Initialization Specification VOLUME 2 DXE Core Interface

14 3/15/2016 Version 1.4 Errata A

Table 7. DXE Architectural Protocols

2.7 Runtime Protocol
Table 8 provides a summary of the runtime protocol for status codes.

Table 8. Status Codes Runtime Protocol

DXE Architectural Protocols Description

Security Architectural Allows the DXE Foundation to authenticate files stored in firmware
volumes before they are used.

CPU Architectural Provides services to manage caches, manage interrupts, retrieve the
processor’s frequency, and query any processor-based timers.

Metronome Architectural Provides the services required to perform very short calibrated stalls.

Timer Architectural Provides the services required to install and enable the heartbeat timer
interrupt required by the timer services in the DXE Foundation.

BDS Architectural Provides an entry point that the DXE Foundation calls once after all of
the DXE drivers have been dispatched from all of the firmware
volumes. This entry point is the transition from the DXE phase to the
Boot Device Selection (BDS) phase, and it is responsible for
establishing consoles and enabling the boot devices required to boot
an OS.

Watchdog Timer Architectural Provides the services required to enable and disable a watchdog timer
in the platform.

Runtime Architectural Provides the services required to convert all runtime services and
runtime drivers from physical mappings to virtual mappings.

Variable Architectural Provides the services to retrieve environment variables and set volatile
environment variables.

Variable Write Architectural
Protocol

Provides the services to set nonvolatile environment variables.

Monotonic Counter Architectural Provides the services required by the DXE Foundation to manage a 64-
bit monotonic counter.

Reset Architectural Provides the services required to reset or shutdown the platform.

Real Time Clock Architectural Provides the services to retrieve and set the current time and date as
well as the time and date of an optional wake-up timer.

Capsule Architectural Protocol Provides the services to retrieve and set the current time and date as
well as the time and date of an optional wake-up timer.

Status Code Runtime
Protocol:

Provides the services to send status codes from the DXE Foundation or DXE
drivers to a log or device.

Version 1.4 Errata A 3/15/2016 15

3
Boot Manager

3.1 Boot Manager
The Boot Manager in DXE executes after all the DXE drivers whose dependencies have been
satisfied have been dispatched by the DXE Dispatcher. At that time, control is handed to the Boot
Device Selection (BDS) phase of execution. The BDS phase is responsible for implementing the
platform boot policy. System firmware that is compliant with this specification must implement the
boot policy specified in the Boot Manager chapter of the UEFI 2.0 specification. This boot policy
provides flexibility that allows system vendors to customize the user experience during this phase of
execution.

The Boot Manager must also support booting from a short-form device path that starts with the first
node being a firmware volume device path. The boot manager must use the GUID in the firmware
volume device node to match it to a firmware volume in the system. The GUID in the firmware
volume device path is compared with the firmware volume name GUID. If a match is made, then the
firmware volume device path can be appended to the device path of the matching firmware volume
and normal boot behavior can then be used.

The BDS phase is implemented as part of the BDS Architectural Protocol. The DXE Foundation
will hand control to the BDS Architectural Protocol after all of the DXE drivers whose dependencies
have been satisfied have been loaded and executed by the DXE Dispatcher. The BDS phase is
responsible for the following:

• Initializing console devices

• Loading device drivers

• Attempting to load and execute boot selections

If the BDS phase cannot make forward progress, it will reinvoke the DXE Dispatcher to see if the
dependencies of any additional DXE drivers have been satisfied since the last time the DXE
Dispatcher was invoked.

Platform Initialization Specification VOLUME 2 DXE Core Interface

16 3/15/2016 Version 1.4 Errata A

Version 1.4 Errata A 3/15/2016 17

4
UEFI System Table

4.1 DXE Services Table

DXE_SERVICES

Summary
Contains a table header and pointers to all of the DXE-specific services.

Related Definitions
#define DXE_SERVICES_SIGNATURE 0x565245535f455844
#define DXE_SPECIFICATION_MAJOR_REVISION 1
#define DXE_SPECIFICATION_MINOR_REVISION 40
#define DXE_SERVICES_REVISION
((DXE_SPECIFICATION_MAJOR_REVISION<<16) |
(DXE_SPECIFICATION_MINOR_REVISION)

typedef struct {
 EFI_TABLE_HEADER Hdr;

 //
 // Global Coherency Domain Services
 //
 EFI_ADD_MEMORY_SPACE AddMemorySpace;
 EFI_ALLOCATE_MEMORY_SPACE AllocateMemorySpace;
 EFI_FREE_MEMORY_SPACE FreeMemorySpace;
 EFI_REMOVE_MEMORY_SPACE RemoveMemorySpace;
 EFI_GET_MEMORY_SPACE_DESCRIPTOR GetMemorySpaceDescriptor;
 EFI_SET_MEMORY_SPACE_ATTRIBUTES SetMemorySpaceAttributes;
 EFI_GET_MEMORY_SPACE_MAP GetMemorySpaceMap;
 EFI_ADD_IO_SPACE AddIoSpace;
 EFI_ALLOCATE_IO_SPACE AllocateIoSpace;
 EFI_FREE_IO_SPACE FreeIoSpace;
 EFI_REMOVE_IO_SPACE RemoveIoSpace;
 EFI_GET_IO_SPACE_DESCRIPTOR GetIoSpaceDescriptor;
 EFI_GET_IO_SPACE_MAP GetIoSpaceMap;

 //
 // Dispatcher Services
 //
 EFI_DISPATCH Dispatch;
 EFI_SCHEDULE Schedule;

Platform Initialization Specification VOLUME 2 DXE Core Interface

18 3/15/2016 Version 1.4 Errata A

 EFI_TRUST Trust;

 //
 // Service to process a single firmware volume found in
 // a capsule
 //
 EFI_PROCESS_FIRMWARE_VOLUME ProcessFirmwareVolume;
 //
 // Extensions to Global Coherency Domain Services
 //
 EFI_SET_MEMORY_SPACE_CAPABILITIES SetMemorySpaceCapabilities;
} DXE_SERVICES;

Parameters
Hdr

The table header for the DXE Services Table. This header contains the
DXE_SERVICES_SIGNATURE and DXE_SERVICES_REVISION values along
with the size of the DXE_SERVICES_TABLE structure and a 32-bit CRC to verify
that the contents of the DXE Services Table are valid.

AddMemorySpace

Adds reserved memory, system memory, or memory-mapped I/O resources to the
global coherency domain of the processor. See the AddMemorySpace() function
description in this document.

AllocateMemorySpace

Allocates nonexistent memory, reserved memory, system memory, or memory-
mapped I/O resources from the global coherency domain of the processor. See the
AllocateMemorySpace() function description in this document.

FreeMemorySpace

Frees nonexistent memory, reserved memory, system memory, or memory-mapped
I/O resources from the global coherency domain of the processor. See the
FreeMemorySpace() function description in this document.

RemoveMemorySpace

Removes reserved memory, system memory, or memory-mapped I/O resources from
the global coherency domain of the processor. See the RemoveMemorySpace()
function description in this document.

GetMemorySpaceDescriptor

Retrieves the descriptor for a memory region containing a specified address. See the
GetMemorySpaceDescriptor() function description in this document.

SetMemorySpaceAttributes

Modifies the attributes for a memory region in the global coherency domain of the
processor. See the SetMemorySpaceAttributes() function description in this
document.

UEFI System Table

Version 1.4 Errata A 3/15/2016 19

GetMemorySpaceMap

Returns a map of the memory resources in the global coherency domain of the
processor. See the GetMemorySpaceMap() function description in this document.

AddIoSpace

Adds reserved I/O or I/O resources to the global coherency domain of the processor.
See the AddIoSpace() function description in this document.

AllocateIoSpace

Allocates nonexistent I/O, reserved I/O, or I/O resources from the global coherency
domain of the processor. See the AllocateIoSpace() function description in
this document.

FreeIoSpace

Frees nonexistent I/O, reserved I/O, or I/O resources from the global coherency
domain of the processor. See the FreeIoSpace() function description in this
document.

RemoveIoSpace

Removes reserved I/O or I/O resources from the global coherency domain of the
processor. See the RemoveIoSpace() function description in this document.

GetIoSpaceDescriptor

Retrieves the descriptor for an I/O region containing a specified address. See the
GetIoSpaceDescriptor() function description in this document.

GetIoSpaceMap

Returns a map of the I/O resources in the global coherency domain of the processor.
See the GetIoSpaceMap() function description in this document.

Dispatch

Loads and executed DXE drivers from firmware volumes. See the Dispatch()
function description in this document.

Schedule

Clears the Schedule on Request (SOR) flag for a component that is stored in a
firmware volume. See the Schedule() function description in this document.

Trust

Promotes a file stored in a firmware volume from the untrusted to the trusted state.
See the Trust() function description in this document.

ProcessFirmwareVolume

Creates a firmware volume handle for a firmware volume that is present in system
memory. See the ProcessFirmwareVolume() function description in this
document.

SetMemorySpaceCapabilities

Modifies the capabilities for a memory region in the global coherency domain of the
processor. See the SetMemorySpaceCapabilities()function description in
this document.

Platform Initialization Specification VOLUME 2 DXE Core Interface

20 3/15/2016 Version 1.4 Errata A

Description
The UEFI DXE Services Table contains a table header and pointers to all of the DXE-specific
services. Except for the table header, all elements in the DXE Services Tables are prototypes of
function pointers to functions as defined in “Services - DXE Services” on page 37.

4.2 UEFI Image Entry Point Examples

4.2.1 UEFI Application Example
The following example shows the UEFI image entry point for an UEFI application. This application
makes use of the UEFI System Table, UEFI Boot Services Table, UEFI Runtime Services Table,
and DXE Services Table.

EFI_GUID gEfiDxeServicesTableGuid = DXE_SERVICES_TABLE_GUID;

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;
DXE_SERVICES *gDS;

EfiApplicationEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 UINTN Index;
 BOOLEAN Result;
 EFI_STATUS Status;
 EFI_TIME *Time;
 UINTN NumberOfDescriptors;
 EFI_GCD_MEMORY_SPACE_DESCRIPTOR MemorySpaceDescriptor;

 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 gDS = NULL;
 for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
 Result = EfiCompareGuid (
 &gEfiDxeServicesTableGuid,
 &(gST->ConfigurationTable[Index].VendorGuid)
);
 if (Result) {
 gDS = gST->ConfigurationTable[Index].VendorTable;
 }
 }
 if (gDS == NULL) {
 return EFI_NOT_FOUND;

UEFI System Table

Version 1.4 Errata A 3/15/2016 21

 }

 //
 // Use UEFI System Table to print “Hello World” to the active console
 // output device.
 //
 Status = gST->ConOut->OutputString (gST->ConOut, L”Hello World\n\r”);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use UEFI Boot Services Table to allocate a buffer to store the
 // current time and date.
 //
 Status = gBS->AllocatePool (
 EfiBootServicesData,
 sizeof (EFI_TIME),
 (VOID **)&Time
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use the UEFI Runtime Services Table to get the current
 // time and date.
 //
 Status = gRT->GetTime (&Time, NULL)
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use UEFI Boot Services to free the buffer that was used to store
 // the current time and date.
 //
 Status = gBS->FreePool (Time);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use the DXE Services Table to get the current GCD Memory Space Map
 //
 Status = gDS->GetMemorySpaceMap (
 &NumberOfDescriptors,
 &MemorySpaceMap
);
 if (EFI_ERROR (Status)) {
 return Status;

Platform Initialization Specification VOLUME 2 DXE Core Interface

22 3/15/2016 Version 1.4 Errata A

 }

 //
 // Use UEFI Boot Services to free the buffer that was used to store
 // the GCD Memory Space Map.
 //
 Status = gBS->FreePool (MemorySpaceMap);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 return Status;
}

4.2.2 Non-UEFI Driver Model Example (Resident in Memory)
The following example shows the UEFI image entry point for an UEFI driver that does not follow
the UEFI Driver Model. Because this driver returns EFI_SUCCESS, it will stay resident in
memory after it exits.

EFI_GUID gEfiDxeServicesTableGuid = DXE_SERVICES_TABLE_GUID;

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;
DXE_SERVICES *gDS;

EfiDriverEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 UINTN Index;
 BOOLEAN Result;

 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 gDS = NULL;
 for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
 Result = EfiCompareGuid (
 &gEfiDxeServicesTableGuid,
 &(gST->ConfigurationTable[Index].VendorGuid)
);
 if (Result) {
 gDS = gST->ConfigurationTable[Index].VendorTable;
 }

UEFI System Table

Version 1.4 Errata A 3/15/2016 23

 }
 if (gDS == NULL) {
 return EFI_REQUEST_UNLOAD_IMAGE;
 }

 //
 // Implement driver initialization here.
 //

 return EFI_SUCCESS;
}

4.2.3 Non-UEFI Driver Model Example (Nonresident in Memory)
The following example shows the UEFI image entry point for an UEFI driver that also does not
follow the UEFI Driver Model. Because this driver returns the error code
EFI_REQUEST_UNLOAD_IMAGE, it will not stay resident in memory after it exits.

EFI_GUID gEfiDxeServicesTableGuid = DXE_SERVICES_TABLE_GUID;

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;
DXE_SERVICES *gDS;

EfiDriverEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 UINTN Index;
 BOOLEAN Result;

 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 gDS = NULL;
 for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
 Result = EfiCompareGuid (
 &gEfiDxeServicesTableGuid,
 &(gST->ConfigurationTable[Index].VendorGuid)
);
 if (Result) {
 gDS = gST->ConfigurationTable[Index].VendorTable;
 }
 }
 if (gDS == NULL) {
 return EFI_REQUEST_UNLOAD_IMAGE;

Platform Initialization Specification VOLUME 2 DXE Core Interface

24 3/15/2016 Version 1.4 Errata A

 }

 //
 // Implement driver initialization here.
 //

 return EFI_REQUEST_UNLOAD_IMAGE;
}

4.2.4 UEFI Driver Model Example
The following is an UEFI Driver Model example that shows the driver initialization routine for the
ABC device controller that is on the XYZ bus. The EFI_DRIVER_BINDING_PROTOCOL is
defined in Chapter 9 of the UEFI 2.0 specification. The function prototypes for the
AbcSupported(), AbcStart(), and AbcStop() functions are defined in Section 9.1 of the
UEFI 2.0 specification. This function saves the driver's image handle and a pointer to the UEFI
Boot Services Table in global variables, so that the other functions in the same driver can have
access to these values. It then creates an instance of the EFI_DRIVER_BINDING_PROTOCOL
and installs it onto the driver's image handle.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
 AbcSupported,
 AbcStart,
 AbcStop,
 0x10,
 NULL,
 NULL
};

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;

 gBS = SystemTable->BootServices;

 mAbcDriverBinding->ImageHandle = ImageHandle;
 mAbcDriverBinding->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBinding->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);
 return Status;

UEFI System Table

Version 1.4 Errata A 3/15/2016 25

}

4.2.5 UEFI Driver Model Example (Unloadable)
The following is the same UEFI Driver Model example as in the UEFI Driver Model Example,
except that it also includes the code required to allow the driver to be unloaded through the boot
service Unload(). Any protocols installed or memory allocated in AbcEntryPoint() must be
uninstalled or freed in the AbcUnload(). The AbcUnload() function first checks to see how
many controllers this driver is currently managing. If the number of controllers is greater than zero,
then this driver cannot be unloaded at this time, so an error is returned.

extern EFI_GUID gEfiLoadedImageProtocolGuid;
extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
 AbcSupported,
 AbcStart,
 AbcStop,
 1,
 NULL,
 NULL
};

EFI_STATUS
AbcUnload (
 IN EFI_HANDLE ImageHandle
);

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;
 EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;

 gBS = SystemTable->BootServices;

 Status = gBS->OpenProtocol (
 ImageHandle,
 &gEfiLoadedImageProtocolGuid,
 &LoadedImage,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

Platform Initialization Specification VOLUME 2 DXE Core Interface

26 3/15/2016 Version 1.4 Errata A

 LoadedImage->Unload = AbcUnload;

 mAbcDriverBinding->ImageHandle = ImageHandle;
 mAbcDriverBinding->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBinding->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);

 return Status;
}

EFI_STATUS
AbcUnload (
 IN EFI_HANDLE ImageHandle
)

{
 EFI_STATUS Status;
 UINTN Count;

 Status = LibGetManagedControllerHandles (ImageHandle, &Count, NULL);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 if (Count > 0) {
 return EFI_ACCESS_DENIED;
 }

 Status = gBS->UninstallMultipleProtocolInterfaces (
 ImageHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);
 return Status;
}

4.2.6 UEFI Driver Model Example (Multiple Instances)
The following is the same as the first UEFI Driver Model example, except that it produces three
EFI_DRIVER_BINDING_PROTOCOL instances. The first one is installed onto the driver’s image
handle. The other two are installed onto newly created handles.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;

UEFI System Table

Version 1.4 Errata A 3/15/2016 27

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingA = {
 AbcSupportedA,
 AbcStartA,
 AbcStopA,
 1,
 NULL,
 NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingB = {
 AbcSupportedB,
 AbcStartB,
 AbcStopB,
 1,
 NULL,
 NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingC = {
 AbcSupportedC,
 AbcStartC,
 AbcStopC,
 1,
 NULL,
 NULL
};

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;

 gBS = SystemTable->BootServices;

 //
 // Install mAbcDriverBindingA onto ImageHandle
 //
 mAbcDriverBindingA->ImageHandle = ImageHandle;
 mAbcDriverBindingA->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingA->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingA,
 NULL
);

Platform Initialization Specification VOLUME 2 DXE Core Interface

28 3/15/2016 Version 1.4 Errata A

 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Install mAbcDriverBindingB onto a newly created handle
 //
 mAbcDriverBindingB->ImageHandle = ImageHandle;
 mAbcDriverBindingB->DriverBindingHandle = NULL;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingB->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
 NULL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Install mAbcDriverBindingC onto a newly created handle
 //
 mAbcDriverBindingC->ImageHandle = ImageHandle;
 mAbcDriverBindingC->DriverBindingHandle = NULL;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingC->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
 NULL
);

 return Status;
}

Version 1.4 Errata A 3/15/2016 29

5
Services - Boot Services

5.1 Extensions to UEFI Boot Service Event Usage

5.1.1 CreateEvent
 CreateEventEx() in UEFI 2.0 allows for registration of events named by GUID’s. The DXE
foundation defines the following:

 #define EFI_EVENT_LEGACY_BOOT_GUID
 {0x2a571201, 0x4966, 0x47f6, 0x8b, 0x86, 0xf3, 0x1e,
 0x41, 0xf3, 0x2f, 0x10}

This event is to be used with CreateEventEx() in order to be notified when the UEFI boot
manager is about to boot a legacy boot option. Notification of events of this type is sent just before
Int19h is invoked.

5.1.2 Pre-Defined Event Groups
This section describes the pre-defined event groups used by this specification.

EFI_EVENT_GROUP_DXE_DISPATCH_GUID

This event group is notified by the system when the DXE dispatcher finished one round of driver
dispatch. This allows the SMM dispatcher get chance to dispatch SMM driver which will depend on
UEFI protocols.

Related Definitions
#define EFI_EVENT_GROUP_DXE_DISPATCH_GUID \
 { 0x7081e22f, 0xcac6, 0x4053, { 0x94, 0x68, 0x67, 0x57, \
 0x82, 0xcf, 0x88, 0xe5 } \ }

5.1.2.1 End of DXE Event
Prior to invoking any UEFI drivers, or applications that are not from the platform manufacturer, or
connecting consoles, the platform should signals the event EFI_END_OF_DXE_EVENT_GUID
End of DXE Event and immediately after that the platform installs DXE SMM Ready to Lock
Protocol (defined in volume 4)..

#define EFI_END_OF_DXE_EVENT_GROUP_GUID \
 { 0x2ce967a, 0xdd7e, 0x4ffc, { 0x9e, 0xe7, 0x81, 0xc, \
 0xf0, 0x47, 0x8, 0x80 } }

From SEC through the signaling of this event, all of the components should be under the authority of
the platform manufacturer and not have to worry about interaction or corruption by 3rd party
extensible modules such as UEFI drivers and UEFI applications.

Platform may choose to lock certain resources or disable certain interfaces prior to executing third
party extensible modules. Transition from the environment where all of the components are under

Platform Initialization Specification VOLUME 2 DXE Core Interface

30 3/15/2016 Version 1.4 Errata A

the authority of the platform manufacturer to the environment where third party modules are
executed is a two-step process:

1. End of DXE Event is signaled. This event presents the last opportunity to use resources or
interfaces that are going to be locked or disabled in anticipation of the invocation of 3rd party
extensible modules.

2. DXE SMM Ready to Lock Protocol is installed. PI modules that need to lock or protect their
resources in anticipation of the invocation of 3rd party extensible modules should register for
notification on installation of this protocol and effect the appropriate protections in their
notification handlers

5.1.3 Additions to LoadImage()

Summary
Loads an UEFI image into memory. This function has been extended from the LoadImage()
Boot Service defined in the UEFI 2.0 specification. The DXE foundation extends this to support an
additional image type, allowing UEFI images to be loaded from files stored in firmware volumes. It
also validates the image using the services of the Security Architectural Protocol.

Prototype
EFI_STATUS
LoadImage (
 IN BOOLEAN BootPolicy,
 IN EFI_HANDLE ParentImageHandle,
 IN EFI_DEVICE_PATH *FilePath,
 IN VOID *SourceBuffer OPTIONAL ,
 IN UINTN SourceSize,
 OUT EFI_HANDLE *ImageHandle
);

Parameters
BootPolicy

If TRUE, indicates that the request originates from the boot manager, and that the boot
manager is attempting to load FilePath as a boot selection. Ignored if
SourceBuffer is not NULL.

ParentImageHandle

The caller’s image handle. Type EFI_HANDLE is defined in the
InstallProtocolInterface() function description in the UEFI 2.0
specification. This field is used to initialize the ParentHandle field of the
LOADED_IMAGE protocol for the image that is being loaded.

FilePath

The specific file path from which the image is loaded. Type EFI_DEVICE_PATH is
defined in the LocateDevicePath() function description in the UEFI 2.0
specification.

Services - Boot Services

Version 1.4 Errata A 3/15/2016 31

SourceBuffer

If not NULL, a pointer to the memory location containing a copy of the image to be
loaded.

SourceSize

The size in bytes of SourceBuffer. Ignored if SourceBuffer is NULL.

ImageHandle

Pointer to the returned image handle that is created when the image is successfully
loaded. Type EFI_HANDLE is defined in the InstallProtocolInterface()
function description in the UEFI 2.0 specification.

Description
The LoadImage() function loads an UEFI image into memory and returns a handle to the image.
The supported subsystem values in the PE image header are listed in "Related Definitions" below.
The image is loaded in one of two ways. If SourceBuffer is not NULL, the function is a memory-
to-memory load in which SourceBuffer points to the image to be loaded and SourceSize
indicates the image’s size in bytes. FilePath specifies where the image specified by
SourceBuffer and SourceSize was loaded. In this case, the caller has copied the image into
SourceBuffer and can free the buffer once loading is complete.

If SourceBuffer is NULL, the function is a file copy operation that uses the
EFI_FIRMWARE_VOLUME2_PROTOCOL, followed by the
SIMPLE_FILE_SYSTEM_PROTOCOL and then the LOAD_FILE_PROTOCOL to access the file
referred to by FilePath. In this case, the BootPolicy flag is passed to the
LOAD_FILE.LoadFile() function and is used to load the default image responsible for booting
when the FilePath only indicates the device. For more information see the discussion of the
Load File Protocol in Chapter 11 of the UEFI 2.0 specification.

Regardless of the type of load (memory-to-memory or file copy), the function relocates the code in
the image while loading it.

The image is also validated using the FileAuthenticationState() service of the Security
Architectural Protocol (SAP). If the SAP returns the status EFI_SUCCESS, then the load operation
is completed normally. If the SAP returns the status EFI_SECURITY_VIOLATION, then the load
operation is completed normally, and the EFI_SECURITY_VIOLATION status is returned. In this
case, the caller is not allowed to start the image until some platform specific policy is executed to
protect the system while executing untrusted code. If the SAP returns the status
EFI_ACCESS_DENIED, then the image should never be trusted. In this case, the image is
unloaded from memory, and EFI_ACCESS_DENIED is returned.

Once the image is loaded, firmware creates and returns an EFI_HANDLE that identifies the image
and supports the LOADED_IMAGE_PROTOCOL. The caller may fill in the image’s “load options”
data, or add additional protocol support to the handle before passing control to the newly loaded
image by calling StartImage(). Also, once the image is loaded, the caller either starts it by
calling StartImage() or unloads it by calling UnloadImage().

Related Definitions
//**
// Supported subsystem values

Platform Initialization Specification VOLUME 2 DXE Core Interface

32 3/15/2016 Version 1.4 Errata A

//**

#define EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION 10
#define EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11
#define EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12
#define EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER 13

Table 9 describes the fields in the above definition.

Table 9. Supported Subsystem Values

Supported Subsystem Values Description

EFI_IMAGE_SUBSYSTEM_EFI_
APPLICATION

The image is loaded into memory of type EfiLoaderCode, and

the memory is freed when the application exits.

EFI_IMAGE_SUBSYSTEM_EFI_
BOOT_SERVICE_DRIVER

The image is loaded into memory of type

EfiBootServicesCode. If the image exits with an error

code, then the memory for the image is free. If the image exits with

EFI_SUCCESS, then the memory for the image is not freed.

EFI_IMAGE_SUBSYSTEM_EFI_
RUNTIME_DRIVER

The image is loaded into memory of type

EfiRuntimeServicesCode. If the image exits with an error

code, then the memory for the image is free. If the image exits with

EFI_SUCCESS, then the memory for the image is not freed.

Images of this type are automatically converted from physical
addresses to virtual address when the Runtime Service

SetVirtualAddressMap() is called.

EFI_IMAGE_SUBSYSTEM_SAL_
RUNTIME_DRIVER

The image is loaded into memory of type

EfiRuntimeServicesCode. If the image exits with an error

code, then the memory for the image is free. If the image exits with

EFI_SUCCESS, then the memory for the image is not freed.

Images of this type are not converted from physical to virtual
addresses when the Runtime Service

SetVirtualAddressMap() is called.

Services - Boot Services

Version 1.4 Errata A 3/15/2016 33

 Status Codes Returned

EFI_SUCCESS The image was loaded into memory.

EFI_SECURITY_VIOLATION The image was loaded into memory, but the current security policy
dictates that the image should not be executed at this time.

EFI_ACCESS_DENIED The image was not loaded into memory because the current security
policy dictates that the image should never be executed.

EFI_NOT_FOUND The FilePath was not found.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_UNSUPPORTED The image type is not supported, or the device path cannot be
parsed to locate the proper protocol for loading the file.

EFI_OUT_OF_RESOURCES Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or not
understood.

EFI_DEVICE_ERROR Image was not loaded because the device returned a read error.

Platform Initialization Specification VOLUME 2 DXE Core Interface

34 3/15/2016 Version 1.4 Errata A

Version 1.4 Errata A 3/15/2016 35

6
Runtime Capabilities

6.1 Additional Runtime Protocol

6.1.1 Status Code Services
Table 10 lists the runtime protocol that are used to report status codes. This protocol provides a
runtime protocol that can be bound by other runtime drivers for reporting status information.

Table 10. Status Code Runtime Protocol

Name Type Description

ReportStatusCode Runtime Reports status codes at boot services time and runtime.

Platform Initialization Specification VOLUME 2 DXE Core Interface

36 3/15/2016 Version 1.4 Errata A

Version 1.4 Errata A 3/15/2016 37

7
Services - DXE Services

7.1 Introduction
This chapter describes the services in the DXE Services Table. These services include the
following:

• Global Coherency Domain (GCD) Services

• Dispatcher Services

The GCD Services are used to manage the system memory, memory-mapped I/O, and I/O resources
present in a platform. The Dispatcher Services are used to invoke the DXE Dispatcher and modify
the state of a DXE driver that is being tracked by the DXE Dispatcher.

7.2 Global Coherency Domain Services

7.2.1 Global Coherency Domain (GCD) Services Overview
The Global Coherency Domain (GCD) Services are used to manage the memory and I/O resources
visible to the boot processor. These resources are managed in two different maps:

• GCD memory space map

• GCD I/O space map

If memory or I/O resources are added, removed, allocated, or freed, then the GCD memory space
map and GCD I/O space map are updated. GCD Services are also provided to retrieve the contents
of these two resource maps.

The GCD Services can be broken up into two groups. The first manages the memory resources
visible to the boot processor, and the second manages the I/O resources visible to the boot processor.
Not all processor types support I/O resources, so the management of I/O resources may not be
required. However, since system memory resources and memory-mapped I/O resources are required
to execute the DXE environment, the management of memory resources is always required.

7.2.2 GCD Memory Resources
The Global Coherency Domain (GCD) Services used to manage memory resources include the
following:

• AddMemorySpace()

• AllocateMemorySpace()

• FreeMemorySpace()

• RemoveMemorySpace()

• SetMemorySpaceAttributes()

Platform Initialization Specification VOLUME 2 DXE Core Interface

38 3/15/2016 Version 1.4 Errata A

• SetMemorySpaceCapabilities()

The GCD Services used to retrieve the GCD memory space map include the following:

• GetMemorySpaceDescriptor()

• GetMemorySpaceMap()

The GCD memory space map is initialized from the HOB list that is passed to the entry point of the
DXE Foundation. One HOB type describes the number of address lines that are used to access
memory resources. This information is used to initialize the state of the GCD memory space map.
Any memory regions outside this initial region are not available to any of the GCD Services that are
used to manage memory resources. The GCD memory space map is designed to describe the
memory address space with as many as 64 address lines. Each region in the GCD memory space
map can begin and end on a byte boundary. There are additional HOB types that describe the
location of system memory, the location memory mapped I/O, the location of firmware devices, the
location of firmware volumes, the location of reserved regions, and the location of system memory
regions that were allocated prior to the execution of the DXE Foundation. The DXE Foundation
must parse the contents of the HOB list to guarantee that memory regions reserved prior to the
execution of the DXE Foundation are honored. As a result, the GCD memory space map must
reflect the memory regions described in the HOB list. The GCD memory space map provides the
DXE Foundation with the information required to initialize the memory services such as
AllocatePages(), FreePages(), AllocatePool(), FreePool(), and
GetMemoryMap(). See the UEFI 2.0 specification for definitions of these services.

A memory region described by the GCD memory space map can be in one of several different states:

• Nonexistent memory

• System memory

• Memory-mapped I/O

• Reserved memory

These memory regions can be allocated and freed by DXE drivers executing in the DXE
environment. In addition, a DXE driver can attempt to adjust the caching attributes of a memory
region. Figure 2 shows the possible state transitions for each byte of memory in the GCD memory
space map. The transitions are labeled with the GCD Service that can move the byte from one state
to another. The GCD services are required to merge similar memory regions that are adjacent to
each other into a single memory descriptor, which reduces the number of entries in the GCD
memory space map.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 39

Figure 2. GCD Memory State Transitions

7.2.3 GCD I/O Resources
The Global Coherency Domain (GCD) Services used to manage I/O resources include the following:

• AddIoSpace()

• AllocateIoSpace()

• FreeIoSpace()

• RemoveIoSpace()

The GCD Services used to retrieve the GCD I/O space map include the following:

• GetIoSpaceDescriptor()

• GetIoSpaceMap()

The GCD I/O space map is initialized from the HOB list that is passed to the entry point of the DXE
Foundation. One HOB type describes the number of address lines that are used to access I/O
resources. This information is used to initialize the state of the GCD I/O space map. Any I/O
regions outside this initial region are not available to any of the GCD Services that are used to
manage I/O resources. The GCD I/O space map is designed to describe the I/O address space with
as many as 64 address lines. Each region in the GCD I/O space map can being and end on a byte
boundary.

An I/O region described by the GCD I/O space map can be in several different states. These include
nonexistent I/O, I/O, and reserved I/O. These I/O regions can be allocated and freed by DXE drivers

Non Existent System Memory

Allocated
System Memory MMIO

Allocated
MMIO

Reserved

Allocated
Reserved

Allocated
Non Existent

Add

Remove

SetAttributes
SetCapabilities

Remove Add

Free Allocate
SetAttributes
SetCapabilities

Free Allocate Free Allocate

Allocate Free

SetAttributes
SetCapabilities

SetAttributes
SetCapabilities

SetAttributes
SetCapabilities

SetAttributes
SetCapabilities

SetAttributes
SetCapabilities

Add

Remove

SetAttributes
SetCapabilities

Operation GCD Service
 Add AddMemorySpace()
 Remove RemoveMemorySpace()
 Allocate AllocateMemorySpace()
 Free FreeMemorySpace()
 SetAttributes SetMemorySpaceAttributes()
 SetCapabilities SetMemorySpaceCapabilities()

Platform Initialization Specification VOLUME 2 DXE Core Interface

40 3/15/2016 Version 1.4 Errata A

executing in the DXE environment. Figure 3 shows the possible state transitions for each byte of I/O
in the GCD I/O space map. The transitions are labeled with the GCD Service that can move the byte
from one state to another. The GCD Services are required to merge similar I/O regions that are
adjacent to each other into a single I/O descriptor, which reduces the number of entries in the GCD
I/O space map.

Figure 3. GCD I/O State Transitions

7.2.4 Global Coherency Domain Services
The functions that make up Global Coherency Domain (GCD) Services are used during preboot to
add, remove, allocate, free, and provide maps of the system memory, memory-mapped I/O, and I/O
resources in a platform. These services, used in conjunction with the Memory Allocation Services,
provide the ability to manage all the memory and I/O resources in a platform. Table 11 lists the
Global Coherency Domain Services.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 41

Table 11. Global Coherency Domain Boot Type Services

Name Description

AddMemorySpace This service adds reserved memory, system memory, or memory-
mapped I/O resources to the global coherency domain of the
processor.

AllocateMemorySpace This service allocates nonexistent memory, reserved memory, system
memory, or memory-mapped I/O resources from the global coherency
domain of the processor.

FreeMemorySpace This service frees nonexistent memory, reserved memory, system
memory, or memory-mapped I/O resources from the global coherency
domain of the processor.

RemoveMemorySpace This service removes reserved memory, system memory, or memory-
mapped I/O resources from the global coherency domain of the
processor.

GetMemorySpaceDescriptor This service retrieves the descriptor for a memory region containing a
specified address.

SetMemorySpaceAttributes This service modifies the attributes for a memory region in the global
coherency domain of the processor.

SetMemorySpaceCapabilities This service modifies the capabilities for a memory region in the global
coherency domain of the processor.

GetMemorySpaceMap Returns a map of the memory resources in the global coherency
domain of the processor.

AddIoSpace This service adds reserved I/O, or I/O resources to the global
coherency domain of the processor.

AllocateIoSpace This service allocates nonexistent I/O, reserved I/O, or I/O resources
from the global coherency domain of the processor.

FreeIoSpace This service frees nonexistent I/O, reserved I/O, or I/O resources from
the global coherency domain of the processor.

RemoveIoSpace This service removes reserved I/O, or I/O resources from the global
coherency domain of the processor.

GetIoSpaceDescriptor This service retrieves the descriptor for an I/O region containing a
specified address.

GetIoSpaceMap Returns a map of the I/O resources in the global coherency domain of
the processor.

Platform Initialization Specification VOLUME 2 DXE Core Interface

42 3/15/2016 Version 1.4 Errata A

AddMemorySpace()

Summary
This service adds reserved memory, system memory, or memory-mapped I/O resources to the global
coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ADD_MEMORY_SPACE) (
 IN EFI_GCD_MEMORY_TYPE GcdMemoryType,
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length,
 IN UINT64 Capabilities
);

Parameters
GcdMemoryType

The type of memory resource being added. Type EFI_GCD_MEMORY_TYPE is
defined in “Related Definitions” below. The only types allowed are
EfiGcdMemoryTypeReserved, EfiGcdMemoryTypeSystemMemory,
EfiGcdMemoryTypePersistent, EfiGcdMemoryTypeMoreReliable,
and EfiGcdMemoryTypeMemoryMappedIo.

BaseAddress

The physical address that is the start address of the memory resource being added.
Type EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size, in bytes, of the memory resource that is being added.

Capabilities

The bit mask of attributes that the memory resource region supports. The bit mask of
available attributes is defined in the GetMemoryMap() function description in the
UEFI 2.0 specification.

Description
The AddMemorySpace() function converts unallocated non-existent memory ranges to a range
of reserved memory, a range of system memory, or a range of memory mapped I/O.
BaseAddress and Length specify the memory range, and GcdMemoryType specifies the
memory type. The bit mask of all supported attributes for the memory range being added is
specified by Capabilities. If the memory range is successfully added, then EFI_SUCCESS is
returned.

If the memory range specified by BaseAddress and Length is of type
EfiGcdMemoryTypeSystemMemory or EfiGcdMemoryTypeMoreReliable, then the

Services - DXE Services

Version 1.4 Errata A 3/15/2016 43

memory range may be automatically allocated for use by the UEFI memory services. If the addition
of the memory range specified by BaseAddress and Length results in a GCD memory space
map containing one or more 4 KiB regions of unallocated EfiGcdMemoryTypeSystemMemory
or EfiGcdMemoryTypeMoreReliable aligned on 4 KiB boundaries, then those regions will
always be converted to ranges of allocated EfiGcdMemoryTypeSystemMemory or
EfiGcdMemoryTypeMoreReliable respectively. This extra conversion will never be
performed for fragments of memory that do not meet the above criteria.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If GcdMemoryType is not EfiGcdMemoryTypeReserved,
EfiGcdMemoryTypeSystemMemory, EfiGcdMemoryTypeMemoryMappedIo,
EfiGcdMemoryPersistent or EfiGcdMemoryTypeMoreReliable then
EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If any portion of the memory range specified by BaseAddress and Length is not of type
EfiGcdMemoryTypeNonExistent, then EFI_ACCESS_DENIED is returned.

If any portion of the memory range specified by BaseAddress and Length was allocated in a
prior call to AllocateMemorySpace(), then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to add the memory resource to the global
coherency domain of the processor, then EFI_OUT_OF_RESOURCES is returned.

Related Definitions
//***
// EFI_GCD_MEMORY_TYPE
//***
typedef enum {
 EfiGcdMemoryTypeNonExistent,
 EfiGcdMemoryTypeReserved,
 EfiGcdMemoryTypeSystemMemory,
 EfiGcdMemoryTypeMemoryMappedIo,
 EfiGcdMemoryTypePersistent,
 EfiGcdMemoryTypeMoreReliable,
 EfiGcdMemoryTypeMaximum
} EFI_GCD_MEMORY_TYPE;

EfiGcdMemoryTypeNonExistent

A memory region that is visible to the boot processor. However, there are no system
components that are currently decoding this memory region.

EfiGcdMemoryTypeReserved

Platform Initialization Specification VOLUME 2 DXE Core Interface

44 3/15/2016 Version 1.4 Errata A

A memory region that is visible to the boot processor. This memory region is being
decoded by a system component, but the memory region is not considered to be either
system memory or memory-mapped I/O.

EfiGcdMemoryTypeSystemMemory

A memory region that is visible to the boot processor. A memory controller is
currently decoding this memory region and the memory controller is producing a
tested system memory region that is available to the memory services.

EfiGcdMemoryTypeMemoryMappedIo

A memory region that is visible to the boot processor. This memory region is
currently being decoded by a component as memory-mapped I/O that can be used to
access I/O devices in the platform.

EfiGcdMemoryTypePersistent

 A memory region that is visible to the boot processor. This memory supports byte-
addressable non-volatility.

EfiGcdMemoryTypeMoreReliable

 A memory region that provides higher reliability relative to other memory in the
system. If all memory has the same reliability, then this bit is not used.

Status Codes Returned

EFI_SUCCESS The memory resource was added to the global coherency domain
of the processor.

EFI_INVALID_PARAMETER GcdMemoryType is invalid.

EFI_INVALID_PARAMETER Length is zero.

EFI_OUT_OF_RESOURCES There are not enough system resources to add the memory
resource to the global coherency domain of the processor.

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory

resource range specified by BaseAddress and Length.

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by

BaseAddress and Length conflicts with a memory

resource range that was previously added to the global coherency
domain of the processor.

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by

BaseAddress and Length was allocated in a prior call to

AllocateMemorySpace().

Services - DXE Services

Version 1.4 Errata A 3/15/2016 45

AllocateMemorySpace()

Summary
This service allocates nonexistent memory, reserved memory, system memory, or memory-mapped
I/O resources from the global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ALLOCATE_MEMORY_SPACE) (
 IN EFI_GCD_ALLOCATE_TYPE GcdAllocateType,
 IN EFI_GCD_MEMORY_TYPE GcdMemoryType,
 IN UINTN Alignment,
 IN UINT64 Length,
 IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
 IN EFI_HANDLE ImageHandle,
 IN EFI_HANDLE DeviceHandle OPTIONAL
);

Parameters
GcdAllocateType

The type of allocation to perform. Type EFI_GCD_ALLOCATE_TYPE is defined in
“Related Definitions” below.

GcdMemoryType

The type of memory resource being allocated. Type EFI_GCD_MEMORY_TYPE is
defined in AddMemorySpace(). The only types allowed are
EfiGcdMemoryTypeNonExistent, EfiGcdMemoryTypeReserved,
EfiGcdMemoryTypeSystemMemory, EfiGcdMemoryTypePersistent,
EfiGcdMemoryTypeMoreReliable and
EfiGcdMemoryTypeMemoryMappedIo.

Alignment

The log base 2 of the boundary that BaseAddress must be aligned on output. For
example, a value of 0 means that BaseAddress can be aligned on any byte
boundary, and a value of 12 means that BaseAddress must be aligned on a 4 KiB
boundary.

Length

The size in bytes of the memory resource range that is being allocated.

BaseAddress

A pointer to a physical address. On input, the way in which the address is used
depends on the value of Type. See “Description” below for more information. On
output the address is set to the base of the memory resource range that was allocated.
Type EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Platform Initialization Specification VOLUME 2 DXE Core Interface

46 3/15/2016 Version 1.4 Errata A

ImageHandle

The image handle of the agent that is allocating the memory resource. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.0
specification.

DeviceHandle

The device handle for which the memory resource is being allocated. If the memory
resource is not being allocated for a device that has an associated device handle, then
this parameter is optional and may be NULL. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The AllocateMemorySpace() function searches for a memory range of type
GcdMemoryType and converts the discovered memory range from the unallocated state to the
allocated state. The parameters GcdAllocateType, Alignment, Length, and
BaseAddress specify the manner in which the GCD memory space map is searched. If a memory
range is found that meets the search criteria, then the base address of the memory range is returned in
BaseAddress, and EFI_SUCCESS is returned. ImageHandle and DeviceHandle are used
to convert the memory range from the unallocated state to the allocated state. ImageHandle
identifies the image that is calling AllocateMemorySpace(), and DeviceHandle identifies
the device that ImageHandle is managing that requires the memory range. DeviceHandle is
optional, because the device that ImageHandle is managing might not have an associated device
handle. If a memory range meeting the search criteria cannot be found, then EFI_NOT_FOUND is
returned.

If GcdAllocateType is EfiGcdAllocateAnySearchBottomUp, then the GCD memory
space map is searched from the lowest address up to the highest address looking for unallocated
memory ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdMemoryType.

If GcdAllocateType is EfiGcdAllocateAnySearchTopDown, then the GCD memory
space map is searched from the highest address down to the lowest address looking for unallocated
memory ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdMemoryType.

If GcdAllocateType is EfiGcdAllocateMaxAddressSearchBottomUp, then the GCD
memory space map is searched from the lowest address up to BaseAddress looking for
unallocated memory ranges of Length bytes beginning on a boundary specified by Alignment
that matches GcdMemoryType.

If GcdAllocateType is EfiGcdAllocateMaxAddressSearchTopDown, then the GCD
memory space map is searched from BaseAddress down to the lowest address looking for
unallocated memory ranges of Length bytes beginning on a boundary specified by Alignment
that matches GcdMemoryType.

If GcdAllocateType is EfiGcdAllocateAddress, then the GCD memory space map is
checked to see if the memory range starting at BaseAddress for Length bytes is of type
GcdMemoryType, unallocated, and begins on a the boundary specified by Alignment.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 47

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If BaseAddress is NULL, then EFI_INVALID_PARAMETER is returned.

If ImageHandle is NULL, then EFI_INVALID_PARAMETER is returned.

If GcdMemoryType is not EfiGcdMemoryTypeNonExistent,
EfiGcdMemoryTypeReserved, EfiGcdMemoryTypeSystem Memory,
EfiGcdMemoryTypePersistent, EfiGcdMemoryTypeMemoryMappedIo,
EfiGcdMemoryTypeMoreReliable, then EFI_INVALID_PARAMETER is returned.

If GcdAlocateType is less than zero, or GcdAllocateType is greater than or equal to
EfiGcdMaxAllocateType then EFI_INVALID_PARAMETER is returned.

If there are not enough system resources available to allocate the memory range, then
EFI_OUT_OF_RESOURCES is returned.

Related Definitions
//***
// EFI_GCD_ALLOCATE_TYPE
//***
typedef enum {
 EfiGcdAllocateAnySearchBottomUp,
 EfiGcdAllocateMaxAddressSearchBottomUp,
 EfiGcdAllocateAddress,
 EfiGcdAllocateAnySearchTopDown,
 EfiGcdAllocateMaxAddressSearchTopDown,
 EfiGcdMaxAllocateType
} EFI_GCD_ALLOCATE_TYPE;

Status Codes Returned

EFI_SUCCESS The memory resource was allocated from the global coherency
domain of the processor.

EFI_INVALID_PARAMETER GcdAllocateType is invalid.

EFI_INVALID_PARAMETER GcdMemoryType is invalid.

EFI_INVALID_PARAMETER Length is zero.

EFI_INVALID_PARAMETER BaseAddress is NULL.

EFI_INVALID_PARAMETER ImageHandle is NULL.

EFI_OUT_OF_RESOURCES There are not enough system resources to allocate the memory
resource from the global coherency domain of the processor.

EFI_NOT_FOUND The memory resource request could not be satisfied.

Platform Initialization Specification VOLUME 2 DXE Core Interface

48 3/15/2016 Version 1.4 Errata A

FreeMemorySpace()

Summary
This service frees nonexistent memory, reserved memory, system memory, or memory-mapped I/O
resources from the global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FREE_MEMORY_SPACE) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length
);

Parameters
BaseAddress

The physical address that is the start address of the memory resource being freed.
Type EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size in bytes of the memory resource range that is being freed.

Description
The FreeMemorySpace() function converts the memory range specified by BaseAddress
and Length from the allocated state to the unallocated state. If this conversion is successful, then
EFI_SUCCESS is returned.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the memory range specified by BaseAddress and Length were not
allocated on previous calls to AllocateMemorySpace(), then EFI_NOT_FOUND is returned.

If there are not enough system resources available to free the memory range, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The memory resource was freed from the global coherency domain of
the processor.

EFI_INVALID_PARAMETER Length is zero.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 49

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory

resource range specified by BaseAddress and Length.

EFI_NOT_FOUND The memory resource range specified by BaseAddress and

Length was not allocated with previous calls to

AllocateMemorySpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to free the memory resource
from the global coherency domain of the processor.

Platform Initialization Specification VOLUME 2 DXE Core Interface

50 3/15/2016 Version 1.4 Errata A

RemoveMemorySpace()

Summary
This service removes reserved memory, system memory, or memory-mapped I/O resources from the
global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_REMOVE_MEMORY_SPACE) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length
);

Parameters
BaseAddress

The physical address that is the start address of the memory resource being removed.
Type EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size in bytes of the memory resource that is being removed.

Description
The RemoveMemorySpace() function converts the memory range specified by BaseAddress
and Length to the memory type EfiGcdMemoryTypeNonExistent. If this conversion is
successful, then EFI_SUCCESS is returned.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the memory range specified by BaseAddress and Length were not
added to the GCD memory space map with previous calls to AddMemorySpace(), then
EFI_NOT_FOUND is returned.

If one or more bytes of the memory range specified by BaseAddress and Length were allocated
from the GCD memory space map with previous calls to AllocateMemorySpace(), then
EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to remove the memory range, then
EFI_OUT_OF_RESOURCES is returned.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 51

Status Codes Returned

EFI_SUCCESS The memory resource was removed from the global coherency
domain of the processor.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory

resource range specified by BaseAddress and Length.

EFI_NOT_FOUND One or more bytes of the memory resource range specified by

BaseAddress and Length was not added with previous calls to

AddMemorySpace().

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by

BaseAddress and Length has been allocated with

AllocateMemorySpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to remove the memory
resource from the global coherency domain of the processor.

Platform Initialization Specification VOLUME 2 DXE Core Interface

52 3/15/2016 Version 1.4 Errata A

GetMemorySpaceDescriptor()

Summary
This service retrieves the descriptor for a memory region containing a specified address.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_MEMORY_SPACE_DESCRIPTOR) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 OUT EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Descriptor
);

Parameters
BaseAddress

The physical address that is the start address of a memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Descriptor

A pointer to a caller allocated descriptor. On return, the descriptor describes the
memory region containing BaseAddress. Type
EFI_GCD_MEMORY_SPACE_DESCRIPTOR is defined in "Related Definitions"
below.

Description
The GetMemorySpaceDescriptor() function retrieves the descriptor for the memory region
that contains the address specified by BaseAddress. If a memory region containing
BaseAddress is found, then the descriptor for that memory region is returned in the caller
allocated structure Descriptor, and EFI_SUCCESS is returned.

If Descriptor is NULL, then EFI_INVALID_PARAMETER is returned.

If a memory region containing BaseAddress is not present in the GCD memory space map, then
EFI_NOT_FOUND is returned.

Related Definitions
//***
// EFI_GCD_MEMORY_SPACE_DESCRIPTOR
//***
typedef struct {
 EFI_PHYSICAL_ADDRESS BaseAddress;
 UINT64 Length;
 UINT64 Capabilities;
 UINT64 Attributes;
 EFI_GCD_MEMORY_TYPE GcdMemoryType;
 EFI_HANDLE ImageHandle;

Services - DXE Services

Version 1.4 Errata A 3/15/2016 53

 EFI_HANDLE DeviceHandle;
} EFI_GCD_MEMORY_SPACE_DESCRIPTOR;

Parameters
BaseAddress

The physical address of the first byte in the memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The number of bytes in the memory region.

Capabilities

The bit mask of attributes that the memory region is capable of supporting. The bit
mask of available attributes is defined in the GetMemoryMap() function description
in the UEFI 2.0 specification.

Attributes

The bit mask of attributes that the memory region is currently using. The bit mask of
available attributes is defined in GetMemoryMap().

GcdMemoryType

Type of the memory region. Type EFI_GCD_MEMORY_TYPE is defined in the
AddMemorySpace() function description.

ImageHandle

The image handle of the agent that allocated the memory resource described by
PhysicalStart and NumberOfBytes. If this field is NULL, then the memory
resource is not currently allocated. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

DeviceHandle

The device handle for which the memory resource has been allocated. If
ImageHandle is NULL, then the memory resource is not currently allocated. If this
field is NULL, then the memory resource is not associated with a device that is
described by a device handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The descriptor for the memory resource region containing

BaseAddress was returned in Descriptor.

EFI_INVALID_PARAMETER Descriptor is NULL.

EFI_NOT_FOUND A memory resource range containing BaseAddress was not

found.

EFI_NOT_AVAILABLE_YET The attributes cannot be set because CPU architectural protocol is not
available yet.

Platform Initialization Specification VOLUME 2 DXE Core Interface

54 3/15/2016 Version 1.4 Errata A

SetMemorySpaceAttributes()

Summary
This service modifies the attributes for a memory region in the global coherency domain of the
processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SET_MEMORY_SPACE_ATTRIBUTES) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length,
 IN UINT64 Attributes
);

Parameters
BaseAddress

The physical address that is the start address of a memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size in bytes of the memory region.

Attributes

The bit mask of attributes to set for the memory region. The bit mask of available
attributes is defined in the GetMemoryMap()function description in the UEFI 2.0
specification.

Description
The SetMemorySpaceAttributes() function modifies the attributes for the memory region
specified by BaseAddress and Length from their current attributes to the attributes specified by
Attributes. If this modification of attributes succeeds, then EFI_SUCCESS is returned.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If the attributes specified by Attributes are not supported for the memory region specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned. The Attributes bit mask
must be a proper subset of the capabilities bit mask for the specified memory region. The
capabilities bit mask is specified when a memory region is added with AddMemorySpace() and
can be retrieved with GetMemorySpaceDescriptor() or GetMemorySpaceMap().

Services - DXE Services

Version 1.4 Errata A 3/15/2016 55

If the attributes for one or more bytes of the memory range specified by BaseAddress and
Length cannot be modified because the current system policy does not allow them to be modified,
then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to modify the attributes of the memory range, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The attributes were set for the memory region.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory

resource range specified by BaseAddress and Length.

EFI_UNSUPPORTED The bit mask of attributes is not support for the memory resource

range specified by BaseAddress and Length.

EFI_ACCESS_DENIED The attributes for the memory resource range specified by

BaseAddress and Length cannot be modified.

EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
the memory resource range.

Platform Initialization Specification VOLUME 2 DXE Core Interface

56 3/15/2016 Version 1.4 Errata A

SetMemorySpaceCapabilities()

 Summary
This service modifies the capabilities for a memory region in the global coherency domain of the
processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SET_MEMORY_SPACE_CAPABILITIES) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length,
 IN UINT64 Capabilities
);

Parameters
 BaseAddress

The physical address that is the start address of a memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI Specification.

Length

The size in bytes of the memory region.

Capabilities

The bit mask of capabilities that the memory region supports. The bit mask of available
attributes is defined in the GetMemoryMap()function description in the UEFI
specification.

Description
The SetMemorySpaceCapabilities() function modifies the capabilities for the memory
region specified by BaseAddress and Length from their current capabilities to the capabilities
specified by Capabilities. If this modification of capabilities succeeds, then EFI_SUCCESS is
returned.

If the value for Capabilities does not include the current operating memory region attributes
(having previously been set by calling SetMemorySpaceAttributes) then
EFI_UNSUPPORTED is returned.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the capabilities for one or more bytes of the memory range specified by BaseAddress and
Length cannot be modified because the current system policy does not allow them to be modified,
then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to modify the capabilities of the memory range,
then EFI_OUT_OF_RESOURCES is returned.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 57

Status Codes Returned

EFI_SUCCESS The capabilities were set for the memory region.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The capabilities specified by Capabilities do not include the

memory region attributes currently in use.

EFI_ACCESS_DENIED The capabilities for the memory resource range specified by

BaseAddress and Length cannot be modified.

EFI_OUT_OF_RESOURCES There are not enough system resources to modify the capabilities
of the memory resource range.

Platform Initialization Specification VOLUME 2 DXE Core Interface

58 3/15/2016 Version 1.4 Errata A

GetMemorySpaceMap()

Summary
Returns a map of the memory resources in the global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_MEMORY_SPACE_MAP) (
 OUT UINTN *NumberOfDescriptors,
 OUT EFI_GCD_MEMORY_SPACE_DESCRIPTOR **MemorySpaceMap
);

Parameters
NumberOfDescriptors

A pointer to number of descriptors returned in the MemorySpaceMap buffer. This
parameter is ignored on input, and is set to the number of descriptors in the
MemorySpaceMap buffer on output.

MemorySpaceMap

A pointer to the array of EFI_GCD_MEMORY_SPACE_DESCRIPTORs. Type
EFI_GCD_MEMORY_SPACE_DESCRIPTOR is defined in
GetMemorySpaceDescriptor(). This buffer is allocated with
AllocatePool(), so it is the caller’s responsibility to free this buffer with a call to
FreePool(). The number of descriptors in MemorySpaceMap is returned in
NumberOfDescriptors. See the UEFI 2.0 specification for definitions of
AllocatePool() and FreePool().

Description
The GetMemorySpaceMap() function retrieves the entire GCD memory space map. If there are
no errors retrieving the GCD memory space map, then the number of descriptors in the GCD
memory space map is returned in NumberOfDescriptors, the array of descriptors from the
GCD memory space map is allocated with AllocatePool(), the descriptors are transferred into
MemorySpaceMap, and EFI_SUCCESS is returned.

If NumberOfDescriptors is NULL, then EFI_INVALID_PARAMETER is returned.

If MemorySpaceMap is NULL, then EFI_INVALID_PARAMETER is returned.

If there are not enough resources to allocate MemorySpaceMap, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The memory space map was returned in the MemorySpaceMap

buffer, and the number of descriptors in MemorySpaceMap was

returned in NumberOfDescriptors.

EFI_INVALID_PARAMETER NumberOfDescriptors is NULL.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 59

EFI_INVALID_PARAMETER MemorySpaceMap is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate MemorySpaceMap.

Platform Initialization Specification VOLUME 2 DXE Core Interface

60 3/15/2016 Version 1.4 Errata A

AddIoSpace()

Summary
This service adds reserved I/O, or I/O resources to the global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ADD_IO_SPACE) (
 IN EFI_GCD_IO_TYPE GcdIoType,
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length
);

Parameters
GcdIoType

The type of I/O resource being added. Type EFI_GCD_IO_TYPE is defined in
“Related Definitions” below. The only types allowed are
EfiGcdIoTypeReserved and EfiGcdIoTypeIo.

BaseAddress

The physical address that is the start address of the I/O resource being added. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size in bytes of the I/O resource that is being added.

Description
The AddIoSpace() function converts unallocated non-existent I/O ranges to a range of reserved
I/O, or a range of I/O. BaseAddress and Length specify the I/O range, and GcdIoType
specifies the I/O type. If the I/O range is successfully added, then EFI_SUCCESS is returned.

If the GCD I/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If GcdIoType is not EfiGcdIoTypeReserved or EfiGcdIoTypeIo, then
EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the I/O range specified by BaseAddress
and Length, then EFI_UNSUPPORTED is returned.

If any portion of the I/O range specified by BaseAddress and Length is not of type
EfiGcdIoTypeNonExistent, then EFI_ACCESS_DENIED is returned.

If any portion of the I/O range specified by BaseAddress and Length was allocated in a prior
call to AllocateIoSpace(), then EFI_ACCESS_DENIED is returned.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 61

If there are not enough system resources available to add the I/O resource to the global coherency
domain of the processor, then EFI_OUT_OF_RESOURCES is returned.

Related Definitions
//***
// EFI_GCD_IO_TYPE
//***
typedef enum {
 EfiGcdIoTypeNonExistent,
 EfiGcdIoTypeReserved,
 EfiGcdIoTypeIo,
 EfiGcdIoTypeMaximum
} EFI_GCD_IO_TYPE;

EfiGcdIoTypeNonExistent

An I/O region that is visible to the boot processor. However, there are no system
components that are currently decoding this I/O region.

EfiGcdIoTypeReserved

An I/O region that is visible to the boot processor. This I/O region is currently being
decoded by a system component, but the I/O region cannot be used to access I/O
devices.

EfiGcdIoTypeIo

An I/O region that is visible to the boot processor. This I/O region is currently being
decoded by a system component that is producing I/O ports that can be used to access
I/O devices.

Status Codes Returned

EFI_SUCCESS The I/O resource was added to the global coherency domain of
the processor.

EFI_INVALID_PARAMETER GcdIoType is invalid.

EFI_INVALID_PARAMETER Length is zero.

EFI_OUT_OF_RESOURCES There are not enough system resources to add the I/O resource to
the global coherency domain of the processor.

EFI_UNSUPPORTED The processor does not support one or more bytes of the I/O

resource range specified by BaseAddress and Length.

EFI_ACCESS_DENIED One or more bytes of the I/O resource range specified by

BaseAddress and Length conflicts with an I/O resource

range that was previously added to the global coherency domain
of the processor.

EFI_ACCESS_DENIED One or more bytes of the I/O resource range specified by

BaseAddress and Length was allocated in a prior call to

AllocateIoSpace().

Platform Initialization Specification VOLUME 2 DXE Core Interface

62 3/15/2016 Version 1.4 Errata A

AllocateIoSpace()

Summary
This service allocates nonexistent I/O, reserved I/O, or I/O resources from the global coherency
domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ALLOCATE_IO_SPACE) (
 IN EFI_GCD_ALLOCATE_TYPE AllocateType,
 IN EFI_GCD_IO_TYPE GcdIoType,
 IN UINTN Alignment,
 IN UINT64 Length,
 IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
 IN EFI_HANDLE ImageHandle,
 IN EFI_HANDLE DeviceHandle OPTIONAL
);

Parameters
GcdAllocateType

The type of allocation to perform. Type EFI_GCD_ALLOCATE_TYPE is defined in
AllocateMemorySpace().

GcdIoType

The type of I/O resource being allocated. Type EFI_GCD_IO_TYPE is defined in
AddIoSpace(). The only types allowed are EfiGcdIoTypeNonExistent,
EfiGcdIoTypeReserved, and EfiGcdIoTypeIo.

Alignment

The log base 2 of the boundary that BaseAddress must be aligned on output. For
example, a value of 0 means that BaseAddress can be aligned on any byte
boundary, and a value of 12 means that BaseAddress must be aligned on a 4 KiB
boundary.

Length

The size in bytes of the I/O resource range that is being allocated.

BaseAddress

A pointer to a physical address. On input, the way in which the address is used
depends on the value of Type. See "Description" below for more information. On
output the address is set to the base of the I/O resource range that was allocated. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

ImageHandle

The image handle of the agent that is allocating the I/O resource. Type EFI_HANDLE
is defined in InstallProtocolInterface() in the v.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 63

DeviceHandle

The device handle for which the I/O resource is being allocated. If the I/O resource is
not being allocated for a device that has an associated device handle, then this
parameter is optional and may be NULL. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The AllocateIoSpace() function searches for an I/O range of type GcdIoType and converts
the discovered I/O range from the unallocated state to the allocated state. The parameters
GcdAllocateType, Alignment, Length, and BaseAddress specify the manner in which
the GCD I/O space map is searched. If an I/O range is found that meets the search criteria, then the
base address of the I/O range is returned in BaseAddress, and EFI_SUCCESS is returned.
ImageHandle and DeviceHandle are used to convert the I/O range from the unallocated state
to the allocated state. ImageHandle identifies the image that is calling AllocateIoSpace(),
and DeviceHandle identifies the device that ImageHandle is managing that requires the I/O
range. DeviceHandle is optional, because the device that ImageHandle is managing might
not have an associated device handle. If an I/O range meeting the search criteria cannot be found,
then EFI_NOT_FOUND is returned.

If GcdAllocateType is EfiGcdAllocateAnySearchBottomUp, then the GCD I/O space
map is searched from the lowest address up to the highest address looking for unallocated I/O ranges
of Length bytes beginning on a boundary specified by Alignment that matches GcdIoType.

If GcdAllocateType is EfiGcdAllocateAnySearchTopDown, then the GCD I/O space
map is searched from the highest address down to the lowest address looking for unallocated I/O
ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdIoType.

If GcdAllocateType is EfiGcdAllocateMaxAddressSearchBottomUp, then the GCD
I/O space map is searched from the lowest address up to BaseAddress looking for unallocated
I/O ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdIoType.

If GcdAllocateType is EfiGcdAllocateMaxAddressSearchTopDown, then the GCD
I/O space map is searched from BaseAddress down to the lowest address looking for unallocated
I/O ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdIoType.

If GcdAllocateType is EfiGcdAllocateAddress, then the GCD I/O space map is checked
to see if the I/O range starting at BaseAddress for Length bytes is of type GcdIoType,
unallocated, and begins on a the boundary specified by Alignment.

If the GCD I/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If BaseAddress is NULL, then EFI_INVALID_PARAMETER is returned.

If ImageHandle is NULL, then EFI_INVALID_PARAMETER is returned.

If GcdIoType is not EfiGcdIoTypeNonExistent, EfiGcdIoTypeReserved, or
EfiGcdIoTypeIo, then EFI_INVALID_PARAMETER is returned.

Platform Initialization Specification VOLUME 2 DXE Core Interface

64 3/15/2016 Version 1.4 Errata A

If GcdAlocateType is less than zero, or GcdAllocateType is greater than or equal to
EfiGcdMaxAllocateType then EFI_INVALID_PARAMETER is returned.

If there are not enough system resources available to allocate the I/O range, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The I/O resource was allocated from the global coherency domain
of the processor.

EFI_INVALID_PARAMETER GcdAllocateType is invalid.

EFI_INVALID_PARAMETER GcdIoType is invalid.

EFI_INVALID_PARAMETER Length is zero.

EFI_INVALID_PARAMETER BaseAddress is NULL.

EFI_INVALID_PARAMETER ImageHandle is NULL.

EFI_OUT_OF_RESOURCES There are not enough system resources to allocate the I/O
resource from the global coherency domain of the processor.

EFI_NOT_FOUND The I/O resource request could not be satisfied.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 65

FreeIoSpace()

Summary
This service frees nonexistent I/O, reserved I/O, or I/O resources from the global coherency domain
of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FREE_IO_SPACE) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length
);

Parameters
BaseAddress

The physical address that is the start address of the I/O resource being freed. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size in bytes of the I/O resource range that is being freed.

Description
The FreeIoSpace() function converts the I/O range specified by BaseAddress and Length
from the allocated state to the unallocated state. If this conversion is successful, then
EFI_SUCCESS is returned.

If the GCD I/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the I/O range specified by BaseAddress
and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the I/O range specified by BaseAddress and Length were not allocated
on previous calls to AllocateIoSpace(), then EFI_NOT_FOUND is returned.

If there are not enough system resources available to free the I/O range, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The I/O resource was freed from the global coherency domain of the
processor.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the I/O resource

range specified by BaseAddress and Length.

Platform Initialization Specification VOLUME 2 DXE Core Interface

66 3/15/2016 Version 1.4 Errata A

EFI_NOT_FOUND The I/O resource range specified by BaseAddress and Length

was not allocated with previous calls to AllocateIoSpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to free the I/O resource from
the global coherency domain of the processor.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 67

RemoveIoSpace()

Summary
This service removes reserved I/O, or I/O resources from the global coherency domain of the
processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_REMOVE_IO_SPACE) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length
);

Parameters
BaseAddress

A pointer to a physical address that is the start address of the I/O resource being
removed. Type EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in
the UEFI 2.0 specification.

Length

The size in bytes of the I/O resource that is being removed.

Description
The RemoveIoSpace() function converts the I/O range specified by BaseAddress and
Length to the I/O type EfiGcdIoTypeNonExistent. If this conversion is successful, then
EFI_SUCCESS is returned.

If the GCD I/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the I/O range specified by BaseAddress
and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the I/O range specified by BaseAddress and Length were not added to
the GCD I/O space map with previous calls to AddIoSpace(), then EFI_NOT_FOUND is
returned.

If one or more bytes of the I/O range specified by BaseAddress and Length were allocated from
the GCD I/O space map with previous calls to AllocateIoSpace(), then
EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to remove the I/O range, then
EFI_OUT_OF_RESOURCES is returned.

Platform Initialization Specification VOLUME 2 DXE Core Interface

68 3/15/2016 Version 1.4 Errata A

Status Codes Returned

EFI_SUCCESS The I/O resource was removed from the global coherency domain
of the processor.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the I/O

resource range specified by BaseAddress and Length.

EFI_NOT_FOUND One or more bytes of the I/O resource range specified by

BaseAddress and Length was not added with previous

calls to AddIoSpace().

EFI_ACCESS_DENIED One or more bytes of the I/O resource range specified by

BaseAddress and Length has been allocated with

AllocateIoSpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to remove the I/O
resource from the global coherency domain of the processor.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 69

GetIoSpaceDescriptor()

Summary
This service retrieves the descriptor for an I/O region containing a specified address.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_IO_SPACE_DESCRIPTOR) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 OUT EFI_GCD_IO_SPACE_DESCRIPTOR *Descriptor
);

Parameters
BaseAddress

The physical address that is the start address of an I/O region. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

Descriptor

A pointer to a caller allocated descriptor. On return, the descriptor describes the I/O
region containing BaseAddress. Type EFI_GCD_IO_SPACE_DESCRIPTOR is
defined in “Related Definitions” below.

Description
The GetIoSpaceDescriptor() function retrieves the descriptor for the I/O region that
contains the address specified by BaseAddress. If an I/O region containing BaseAddress is
found, then the descriptor for that I/O region is returned in the caller allocated structure
Descriptor, and EFI_SUCCESS is returned.

If Descriptor is NULL, then EFI_INVALID_PARAMETER is returned.

If an I/O region containing BaseAddress is not present in the GCD I/O space map, then
EFI_NOT_FOUND is returned.

Related Definitions
//***
// EFI_GCD_IO_SPACE_DESCRIPTOR
//***
typedef struct {
 EFI_PHYSICAL_ADDRESS BaseAddress;
 UINT64 Length;
 EFI_GCD_IO_TYPE GcdIoType;
 EFI_HANDLE ImageHandle;
 EFI_HANDLE DeviceHandle;
} EFI_GCD_IO_SPACE_DESCRIPTOR;

Platform Initialization Specification VOLUME 2 DXE Core Interface

70 3/15/2016 Version 1.4 Errata A

Parameters
BaseAddress

Physical address of the first byte in the I/O region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

Number of bytes in the I/O region.

GcdIoType

Type of the I/O region. Type EFI_GCD_IO_TYPE is defined in the
AddIoSpace() function description.

ImageHandle

The image handle of the agent that allocated the I/O resource described by
PhysicalStart and NumberOfBytes. If this field is NULL, then the I/O
resource is not currently allocated. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

DeviceHandle

The device handle for which the I/O resource has been allocated. If ImageHandle
is NULL, then the I/O resource is not currently allocated. If this field is NULL, then
the I/O resource is not associated with a device that is described by a device handle.
Type EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI
2.0 specification.

Status Codes Returned

EFI_SUCCESS The descriptor for the I/O resource region containing

BaseAddress was returned in Descriptor.

EFI_INVALID_PARAMETER Descriptor is NULL.

EFI_NOT_FOUND An I/O resource range containing BaseAddress was not found.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 71

GetIoSpaceMap()

Summary
Returns a map of the I/O resources in the global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_IO_SPACE_MAP) (
 OUT UINTN *NumberOfDescriptors,
 OUT EFI_GCD_IO_SPACE_DESCRIPTOR **IoSpaceMap
);

Parameters
NumberOfDescriptors

A pointer to number of descriptors returned in the IoSpaceMap buffer. This
parameter is ignored on input, and is set to the number of descriptors in the
IoSpaceMap buffer on output.

IoSpaceMap

A pointer to the array of EFI_GCD_IO_SPACE_DESCRIPTORs. Type
EFI_GCD_IO_SPACE_DESCRIPTOR is defined in
GetIoSpaceDescriptor(). This buffer is allocated with AllocatePool(),
so it is the caller’s responsibility to free this buffer with a call to FreePool(). The
number of descriptors in IoSpaceMap is returned in NumberOfDescriptors.

Description
The GetIoSpaceMap() function retrieves the entire GCD I/O space map. If there are no errors
retrieving the GCD I/O space map, then the number of descriptors in the GCD I/O space map is
returned in NumberOfDescriptors, the array of descriptors from the GCD I/O space map is
allocated with AllocatePool(), the descriptors are transferred into IoSpaceMap, and
EFI_SUCCESS is returned.

If NumberOfDescriptors is NULL, then EFI_INVALID_PARAMETER is returned.

If IoSpaceMap is NULL, then EFI_INVALID_PARAMETER is returned.

If there are not enough resources to allocate IoSpaceMap, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned

EFI_SUCCESS The I/O space map was returned in the IoSpaceMap buffer, and

the number of descriptors in IoSpaceMap was returned in

NumberOfDescriptors.

EFI_INVALID_PARAMETER NumberOfDescriptors is NULL.

EFI_INVALID_PARAMETER IoSpaceMap is NULL.

Platform Initialization Specification VOLUME 2 DXE Core Interface

72 3/15/2016 Version 1.4 Errata A

EFI_OUT_OF_RESOURCES There are not enough resources to allocate IoSpaceMap.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 73

7.3 Dispatcher Services
The functions that make up the Dispatcher Services are used during preboot to schedule drivers for
execution. A driver may optionally have the Schedule On Request (SOR) flag set in the driver’s
dependency expression. Drivers with this bit set will not be loaded and invoked until they are
explicitly requested to do so. Files loaded from firmware volumes may be placed in the untrusted
state by the Security Architectural Protocol. The services in this section provide this ability to clear
the SOR flag in a DXE driver’s dependency expression and the ability to promote a file from a
firmware volume from the untrusted to the trusted state. Table 12 lists the Dispatcher Services.

Table 12. Dispatcher Boot Type Services

Name Description

Dispatch Loads and executed DXE drivers from firmware volumes.

Schedule Clears the Schedule on Request (SOR) flag for a component that is
stored in a firmware volume.

Trust Changes the state of a file stored in a firmware volume from the
untrusted state to the trusted state.

ProcessFirmwareVolume Creates a firmware volume handle for a firmware volume that is
present in system memory.

Platform Initialization Specification VOLUME 2 DXE Core Interface

74 3/15/2016 Version 1.4 Errata A

Dispatch()

Summary
Loads and executes DXE drivers from firmware volumes.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISPATCH) (
 VOID
);

Description
The Dispatch() function searches for DXE drivers in firmware volumes that have been installed
since the last time the Dispatch() service was called. It then evaluates the dependency
expressions of all the DXE drivers and loads and executes those DXE drivers whose dependency
expression evaluate to TRUE. This service must interact with the Security Architectural Protocol to
authenticate DXE drivers before they are executed. This process is continued until no more DXE
drivers can be executed. If one or more DXE drivers are executed, then EFI_SUCCESS is returned.
If no DXE drivers are executed, EFI_NOT_FOUND is returned.

If an attempt is made to invoke the DXE Dispatcher recursively, then no action is performed by the
Dispatch() service, and EFI_ALREADY_STARTED is returned. In this case, because the DXE
Dispatcher is already running, it is not necessary to invoke it again. All the DXE drivers that can be
dispatched will be dispatched.

Status Codes Returned

EFI_SUCCESS One or more DXE driver were dispatched.

EFI_NOT_FOUND No DXE drivers were dispatched.

EFI_ALREADY_STARTED An attempt is being made to start the DXE Dispatcher recursively.
Thus no action was taken.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 75

Schedule()

Summary
Clears the Schedule on Request (SOR) flag for a component that is stored in a firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCHEDULE) (
 IN EFI_HANDLE FirmwareVolumeHandle,
 IN CONST EFI_GUID *FileName
);

Parameters
FirmwareVolumeHandle

The handle of the firmware volume that contains the file specified by FileName.
Type EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI
2.0 specification.

FileName

A pointer to the name of the file in a firmware volume. This is the file that should
have its SOR bit cleared. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The Schedule() function searches the dispatcher queues for the driver specified by
FirmwareVolumeHandle and FileName. If this driver cannot be found, then
EFI_NOT_FOUND is returned. If the driver is found, and its Schedule On Request (SOR) flag is not
set in its dependency expression, then EFI_NOT_FOUND is returned. If the driver is found, and its
SOR bit is set in its dependency expression, then the SOR flag is cleared, and EFI_SUCCESS is
returned. After the SOR flag is cleared, the driver will be dispatched if the remaining portions of its
dependency expression are satisfied. This service does not automatically invoke the DXE
Dispatcher. Instead, the Dispatch() service must be used to invoke the DXE Dispatcher.

Status Codes Returned

EFI_SUCCESS The DXE driver was found and its SOR bit was cleared.

EFI_NOT_FOUND The DXE driver does not exist, or the DXE driver exists and its SOR
bit is not set.

Platform Initialization Specification VOLUME 2 DXE Core Interface

76 3/15/2016 Version 1.4 Errata A

Trust()

Summary
Promotes a file stored in a firmware volume from the untrusted to the trusted state. Only the
Security Architectural Protocol can place a file in the untrusted state. A platform specific
component may choose to use this service to promote a previously untrusted file to the trusted state.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TRUST) (
 IN EFI_HANDLE FirmwareVolumeHandle,
 IN CONST EFI_GUID *FileName
);

Parameters
FirmwareVolumeHandle

The handle of the firmware volume that contains the file specified by FileName.
Type EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI
2.0 specification.

FileName

A pointer to the name of the file in a firmware volume. This is the file that should be
promoted from the untrusted state to the trusted state. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The Trust() function promotes the file specified by FirmwareVolumeHandle and
FileName from the untrusted state to the trusted state. If this file is not found in the queue of
untrusted files, then EFI_NOT_FOUND is returned. If the driver is found, and its state is changed to
trusted and EFI_SUCCESS is returned. This service does not automatically invoke the DXE
Dispatcher. Instead, the Dispatch() service must be used to invoke the DXE Dispatcher.

Status Codes Returned

EFI_SUCCESS The file was found in the untrusted state, and it was promoted to the
trusted state.

EFI_NOT_FOUND The file was not found in the untrusted state.

Services - DXE Services

Version 1.4 Errata A 3/15/2016 77

ProcessFirmwareVolume()

Summary
Creates a firmware volume handle for a firmware volume that is present in system memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PROCESS_FIRMWARE_VOLUME) (
 IN CONST VOID *FirmwareVolumeHeader,
 IN UINTN Size,
 OUT EFI_HANDLE *FirmwareVolumeHandle
);

Parameters
FirmwareVolumeHeader

A pointer to the header of the firmware volume.

Size

The size, in bytes, of the firmware volume.

FirmwareVolumeHandle

On output, a pointer to the created handle. This service will install the
EFI_FIRMWARE_VOLUME2_PROTOCOL and EFI_DEVICE_PATH_PROTOCOL
for the of the firmware volume that is described by FirmwareVolumeHeader and
Size. Type EFI_HANDLE is defined in InstallProtocolInterface() in
the UEFI 2.0 specification.

Description
The ProcessFirmwareVolume() function examines the contents of the buffer specified by
FirmwareVolumeHeader and Size. If the buffer contains a valid firmware volume, then a
new handle is created, and the EFI_FIRMWARE_VOLUME2_PROTOCOL and a memory-mapped
EFI_DEVICE_PATH_PROTOCOL are installed onto the new handle. The new handle is returned
in FirmwareVolumeHandle.

Status Codes Returned

EFI_SUCCESS The EFI_FIRMWARE_VOLUME2_PROTOCOL and

EFI_DEVICE_PATH_PROTOCOL were installed onto

FirmwareVolumeHandle for the firmware volume described

by FirmwareVolumeHeader and Size.

EFI_VOLUME_CORRUPTED The firmware volume described by FirmwareVolumeHeader

and Size is corrupted.

Platform Initialization Specification VOLUME 2 DXE Core Interface

78 3/15/2016 Version 1.4 Errata A

EFI_OUT_OF_RESOURCES There are not enough system resources available to produce the

EFI_FIRMWARE_VOLUME2_PROTOCOL and

EFI_DEVICE_PATH_PROTOCOL for the firmware volume

described by FirmwareVolumeHeader and Size.

Version 1.4 Errata A 3/15/2016 79

8
Protocols - Device Path Protocol

8.1 Introduction
This section adds two device path node types that describe files stored in firmware volumes:

• Firmware File Media Device Path

• Firmware Volume Media Device Path

These device path nodes are used by a DXE-aware updated UEFI Boot Service LoadImage() to
load UEFI images from firmware volumes. This new capability is used by the DXE Dispatcher to
load DXE drivers from firmware volumes.

8.2 Firmware Volume Media Device Path
This type is used by systems implementing the PI architecture specifications to describe a firmware
volume.

Table 13. Firmware Volume Media Device Path

Table 14. Firmware Volume Device Node Text Representation

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 4 – Media Device Path

Sub-Type 1 1 Sub Type 7 – Firmware Volume Media
Device Path

Length 2 2 Length of this structure in bytes. Length is
20 bytes.

Firmware Volume
Name

4 16 Firmware volume name. Type EFI_GUID.

Device Node Type/Subtype/Other Description

Type: 4 (Media Device Path)
Sub-Type: 7 (Firmware Volume)

Fv(fv-guid)

The fv-guid is a GUID.

Platform Initialization Specification VOLUME 2 DXE Core Interface

80 3/15/2016 Version 1.4 Errata A

8.3 Firmware File Media Device Path
This type is used by systems implementing the PI architecture specifications to describe a firmware
file in a firmware volume.

Table 15. Firmware File Media Device Path

Table 16. Firmware Volume File Device Node Text Representation

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 4 – Media Device Path

Sub-Type 1 1 Sub Type 6 – Firmware File Media Device Path

Length 2 2 Length of this structure in bytes. Length is 20 bytes.

Firmware File Name 4 16 Firmware file name. Type EFI_GUID.

Device Node Type/Subtype/Other Description

Type: 4 (Media Device Path)
Sub-Type: 6 (Firmware File)

FvFile(fvfile-guid)

The fvfile-guid is a GUID.

Version 1.4 Errata A 3/15/2016 81

9
DXE Foundation

9.1 Introduction
The DXE Foundation is designed to be completely portable with no processor, chipset, or platform
dependencies. This lack of dependencies is accomplished by designing in several features:

• The DXE Foundation depends only upon a HOB list for its initial state.
This means that the DXE Foundation does not depend on any services from a previous phase, so
all the prior phases can be unloaded once the HOB list is passed to the DXE Foundation.

• The DXE Foundation does not contain any hard-coded addresses.
This means that the DXE Foundation can be loaded anywhere in physical memory, and it can
function correctly no matter where physical memory or where Firmware Volumes (FVs) are
located in the processor’s physical address space.

• The DXE Foundation does not contain any processor-specific, chipset-specific, or platform-
specific information.
Instead, the DXE Foundation is abstracted from the system hardware through a set of DXE
Architectural Protocol interfaces. These architectural protocol interfaces are produced by a set
of DXE drivers that are invoked by the DXE Dispatcher.

The DXE Foundation must produce the UEFI System Table and its associated set of UEFI Boot
Services and UEFI Runtime Services. The DXE Foundation also contains the DXE Dispatcher
whose main purpose is to discover and execute DXE drivers stored in FVs. The execution order of
DXE drivers is determined by a combination of the optional a priori file and the set of dependency
expressions that are associated with the DXE drivers. The FV file format allows dependency
expressions to be packaged with the executable DXE driver image. DXE drivers utilize a PE/COFF
image format, so the DXE Dispatcher must also contain a PE/COFF loader to load and execute DXE
drivers.

The GetMemoryMap() implementation must include all GCD map entries of types
EfiGcdMemoryTypeReserved and EfiGcdMemoryTypeMemoryMappedIo into the UEFI memory
map.

9.2 Hand-Off Block (HOB) List
The Hand-Off Block (HOB) list contains all the information that the DXE Foundation requires to
produce its memory-based services. The HOB list contains the following:

• Information on the boot mode and the memory that was allocated in the previous phase.

• A description of the system memory that was initialized by the previous phase along with
information about the firmware devices that were discovered in the previous phase.

The firmware device information includes the system memory locations of the firmware devices and
system memory locations of the firmware volumes that are contained within those firmware devices.

Platform Initialization Specification VOLUME 2 DXE Core Interface

82 3/15/2016 Version 1.4 Errata A

The firmware volumes may contain DXE drivers, and the DXE Dispatcher is responsible for loading
and executing the DXE drivers that are discovered in those firmware volumes.

The I/O resources and memory-mapped I/O resources that were discovered in the previous phase.

The HOB list must be treated as a read-only data structure. It conveys the state of the system at the
time the DXE Foundation is started. The DXE Foundation and DXE drivers should never modify
the contents of the HOB list.

Figure 4 shows an example HOB list. The first HOB list entry is always the Phase Handoff
Information Table (PHIT) HOB that contains the boot mode and a description of the memory
regions used by the previous phase. The rest of the HOB list entries can appear in any order. This
example shows the various HOB types that are supported. The most important ones to the DXE
Foundation are the HOBs that describe system memory and the firmware volumes. A HOB list is
terminated by an end of list HOB. There is one additional HOB type that is not shown. This is a
GUIDed HOB that allows a module from the previous phase to pass private data to a DXE driver.
Only the DXE driver that recognizes the GUID value in the GUIDed HOB will be able to understand
the data in the GUIDed HOB. The DXE Foundation does not consume any GUIDed HOBs. The
HOB entries are all designed to be position independent. This allows the DXE Foundation to
relocate the HOB list to a different location if the DXE Foundation does not like where the previous
phase placed the HOB list in memory.

See “HOB Translations” on page 94 for more information on HOB types.

Figure 4. HOB List

DXE Foundation

Version 1.4 Errata A 3/15/2016 83

9.3 DXE Foundation Data Structures
The DXE Foundation produces the UEFI System Table, and the UEFI System Table is consumed by
every DXE driver and executable image invoked by the DXE Dispatcher and BDS. It contains all
the information required for these components to utilize the services provided by the DXE
Foundation and the services provided by any previously loaded DXE driver. Figure 5 shows the
various components that are available through the UEFI System Table.

Figure 5. UEFI System Table and Related Components

The DXE Foundation produces the UEFI Boot Services, UEFI Runtime Services, and DXE Services
with the aide of the DXE Architectural Protocols. The UEFI System Table also provides access to
all the active console devices in the platform and the set of UEFI Configuration Tables. The UEFI
Configuration Tables are an extensible list of tables that describe the configuration of the platform.
Today, this includes pointers to tables such as DXE Services, the HOB list, ACPI table, SMBIOS
table, and the SAL System Table. This list may be expanded in the future as new table types are
defined. Also, through the use of the Protocol Handle Services in the UEFI Boot Services Table,
any executable image can access the handle database and any of the protocol interfaces that have
been registered by DXE drivers.

When the transition to the OS runtime is performed, the handle database, active consoles, UEFI Boot
Services, DXE Services, and services provided by boot service DXE drivers are terminated. This
frees up memory for use by the OS. This only leaves the UEFI System Table, UEFI Runtime

System Configuration Table

ACPI Table

UEFI
System
Table

UEFI Boot Services Table

UEFI Runtime Services Table

Variable Services

Real Time Clock Services

Reset Services

Status Code Services

Virtual Memory Services

Task Priority Level Services

Memory Services

Event and Timer Services

Protocol Handler Services

Image Services

Driver Support Services

Global Coherency Domain Services

SMBIOS Table

…

SAL System Table

Input Console

Active Consoles

Output Console

Standard Error Console

Version Information

UEFI Specification Version

Firmware Vendor

Firmware Revision

Handle Database Protocol InterfaceProtocol InterfaceProtocol InterfaceProtocol InterfaceProtocol InterfaceProtocol Interface

Boot Services and Structures

Only available prior to OS runtime

Runtime Services and Structures

Available before and during OS runtime

DXE Services Table

Dispatcher Services

DXE Services Table

HOB List

Platform Initialization Specification VOLUME 2 DXE Core Interface

84 3/15/2016 Version 1.4 Errata A

Services Table, and the UEFI Configuration Tables available in the OS runtime environment. There
is also the option of converting all of the UEFI Runtime Services from a physical address space to an
OS-specific virtual address space. This address space conversion may be performed only once.

9.4 Required DXE Foundation Components
Figure 6 shows the components that a DXE Foundation must contain. A detailed description of
these component follows.

Figure 6. DXE Foundation Components

A DXE Foundation must have the following components:

• An implementation of the UEFI Boot Services. UEFI Boot Services Dependencies describes
which services can be made available based on the HOB list alone and which services depend on
the presence of architectural protocols.

• An implementation of the DXE Services. DXE Services Dependencies describes which services
can be made available based on the HOB list alone and which services depend on the presence
of architectural protocols.

• A HOB Parser that consumes the HOB list specified by HobStart and initializes the UEFI
memory map, GCD memory space map, and GCD I/O space map. See section if for details on
the translation from HOBs to the maps maintained by the DXE Foundation

DXE Foundation

Protocol Handler
Services

Memory
Services

Event and Timer
Services

Image
Services

UEFI Boot Services DXE Services

Global Conherency
Domain Services

Dispatcher Services

PE/COFF
Loader

HOB
Parser

DXE Dispatcher

Dependency
Expression
Evaluator

Flush Instruction
Cache

Switch
Stacks

SetJump
LongJump

Firmware
Volume
Block
Driver

(Read Only)
(Memory
Mapped)

Section
Extraction
Protocol

Driver

Firmware Volume
Driver

Decompress
Driver

Task Priority
Services

Driver Support
Services

DXE Foundation

Version 1.4 Errata A 3/15/2016 85

• An implementation if a DXE Dispatcher that includes a dependency expression evaluator. See
“DXE Dispatcher” on page 99 for a detailed description of this component.

• A Firmware Volume driver that produces the EFI_FIRMWARE_VOLUME2_PROTOCOL for
every firmware volume described in the HOB list. This component is used by the DXE
Dispatcher to search for a priori files and DXE drivers in firmware volumes. See the Platform
Initialization Specification, Volume 3, for the definition of the Firmware Volume Protocol.

• An instance of the EFI_DECOMPRESS_PROTOCOL. See the UEFI 2.0 specification for the
detailed requirements for this component. This component is required by the DXE Dispatcher to
read compressed sections from DXE drivers stored in firmware volumes. It is expected that
most DXE drivers will utilize compressed sections to reduce the size of firmware volumes.

• The DXE Dispatcher uses the Boot Service StartImage() to invoke a DXE driver. The
Boot Services StartImage() and Exit() work together to hand control to a DXE driver
and return control to the DXE Foundation. Since the Boot Service Exit() can be called for
anywhere inside a DXE driver, the Boot Service Exit() is required to rebalance the stack, so it
is in the same state it was in when the Boot Service Start() was called. This is typically
implemented using the processor-specific functions called SetJump() and LongJump().
Since the DXE Foundation must use the Boot Services StartImage() and Exit() to
invoke DXE drivers, the routines SetJump() and LongJump() are required by the DXE
Foundation.

• A PE/COFF loader that supports PE32+ image types. This PE/COFF loader is used to
implement the UEFI Boot Service LoadImage(). The DXE Dispatcher uses the Boot Service
LoadImage() to load DXE drivers into system memory. If the processor that the DXE
Foundation is compiled for requires an instruction cache when an image is loaded into system
memory, then an instruction cache flush routine is also required in the DXE Foundation.

• The phase that executed prior to DXE will initialize a stack for the DXE Foundation to use. This
stack is described in the HOB list. If the size of this stack does not meet the DXE Foundation’s
minimum stack size requirement or the stack is not located in memory region that is suitable to
the DXE Foundation, then the DXE Foundation will have to allocate a new stack that does meet
the minimum size and location requirements. As a result, the DXE Foundation must contain a
stack switching routine for the processor type that the DXE Foundation is compiled.

Platform Initialization Specification VOLUME 2 DXE Core Interface

86 3/15/2016 Version 1.4 Errata A

9.5 Handing Control to DXE Dispatcher
The DXE Foundation must complete the following tasks before handing control to the DXE
Dispatcher. The order that these tasks are performed is implementation dependent.

• Use the HOB list to initialize the GCD memory space map, the GCD I/O space map, and UEFI
memory map.

• Allocate the UEFI Boot Services Table from EFI_BOOT_SERVICES_MEMORY and initialize
the services that only require system memory to function correctly. The remaining UEFI Boot
Services must be filled in with a service that returns EFI_NOT_AVAILABLE_YET.

• Allocate the DXE Services Table from EFI_BOOT_SERVICES_MEMORY and initialize the
services that only require system memory to function correctly. The remaining DXE Services
must be filled in with a service that returns EFI_NOT_AVAILABLE_YET.

• Allocate the UEFI Runtime Services Table from EFI_RUNTIME_SERVICES_MEMORY and
initialize all the services to a service that returns EFI_NOT_AVAILABLE_YET.

• Allocate the UEFI System Table from EFI_RUNTIME_SERVICES_MEMORY and initialize all
the fields.

• Build an image handle and EFI_LOADED_IMAGE_PROTOCOL instance for the DXE
Foundation itself and add it to the handle database.

• If the HOB list is not in a suitable location in memory, then relocate the HOB list to a more
suitable location.

• Add the DXE Services Table to the UEFI Configuration Table.

• Add the HOB list to the UEFI Configuration Table.

• Create a notification event for each of the DXE Architectural Protocols. These events will be
signaled when a DXE driver installs a DXE Architectural Protocol in the handle database. The
DXE Foundation must have a notification function associated with each of these events, so the
full complement of UEFI Boot Services, UEFI Runtime Services, and DXE Services can be
produced. Each of the notification functions should compute the 32-bit CRC of the UEFI Boot
Services Table, UEFI Runtime Services Table, and the DXE Services Table if the
CalculateCrc32() Boot Services is available.

• Initialize the Decompress Protocol driver that must be available before the DXE Dispatcher can
process compressed sections.

• Produce firmware volume handles for the one or more firmware volumes that are described in
the HOB list.

Once these tasks have been completed, the DXE Foundation is ready to load and execute DXE
drivers stored in firmware volumes. This execution is done by handing control to the DXE
Dispatcher. Once the DXE Dispatcher has finished dispatching all the DXE drivers that it can,
control is then passed to the BDS Architectural Protocol. If for some reason, any of the DXE
Architectural Protocols have not been produced by the DXE drivers, then the system is in an
unusable state and the DXE Foundation must halt. Otherwise, control is handed to the BDS
Architectural Protocol. The BDS Architectural Protocol is responsible for transferring control to an
operating system or system utility.

DXE Foundation

Version 1.4 Errata A 3/15/2016 87

9.6 DXE Foundation Entry Point

9.6.1 DXE_ENTRY_POINT
The only parameter passed to the DXE Foundation is a pointer to the HOB list. The DXE
Foundation and all the DXE drivers must treat the HOB list as read-only data.

The function DXE_ENTRY_POINT is the main entry point to the DXE Foundation.

DXE_ENTRY_POINT

Summary
This function is the main entry point to the DXE Foundation.

Prototype
typedef
VOID
(EFIAPI *DXE_ENTRY_POINT) (
 IN CONST VOID *HobStart
);

Parameters
HobStart

A pointer to the HOB list.

Description
This function is the entry point to the DXE Foundation. The PEI phase, which executes just before
DXE, is responsible for loading and invoking the DXE Foundation in system memory. The only
parameter that is passed to the DXE Foundation is HobStart. This parameter is a pointer to the
HOB list that describes the system state at the hand-off to the DXE Foundation. At a minimum, this
system state must include the following:

• PHIT HOB

• CPU HOB

• Description of system memory

• Description of one or more firmware volumes

The DXE Foundation is also guaranteed that only one processor is running and that the processor is
running with interrupts disabled. The implementation of the DXE Foundation must not make any
assumptions about where the DXE Foundation will be loaded or where the stack is located. In
general, the DXE Foundation should make as few assumptions about the state of the system as
possible. This lack of assumptions will allow the DXE Foundation to be portable to the widest
variety of system architectures.

Platform Initialization Specification VOLUME 2 DXE Core Interface

88 3/15/2016 Version 1.4 Errata A

9.7 Dependencies

9.7.1 UEFI Boot Services Dependencies
Table 17 lists all the UEFI Boot Services and the components upon which each of these services
depend. The topics that follow describe what responsibilities the DXE Foundation has in producing
the services that depend on the presence of DXE Architectural Protocols.

Table 17. Boot Service Dependencies

Name Dependency

CreateEvent HOB list

CloseEvent HOB list

SignalEvent HOB list

WaitForEvent HOB list

CheckEvent HOB list

SetTimer Timer Architectural Protocol

RaiseTPL CPU Architectural Protocol

RestoreTPL CPU Architectural Protocol

AllocatePages HOB list

FreePages HOB list

GetMemoryMap HOB list and GetMemorySpaceMap

AllocatePool HOB list

FreePool HOB list

InstallProtocolInterface HOB list

UninstallProtocolInterface HOB list

ReinstallProtocolInterface HOB list

RegisterProtocolNotify HOB list

LocateHandle HOB list

HandleProtocol HOB list

LocateDevicePath HOB list

OpenProtocol HOB list

CloseProtocol HOB list

OpenProtocolInformation HOB list

ConnectController HOB list

DisconnectController HOB list

ProtocolsPerHandle HOB list

LocateHandleBuffer HOB list

LocateProtocol HOB list

InstallMultipleProtocolInterfaces HOB list

UninstallMultipleProtocolInterfaces HOB list

LoadImage HOB list

DXE Foundation

Version 1.4 Errata A 3/15/2016 89

9.7.1.1 SetTimer()
When the DXE Foundation is notified that the EFI_TIMER_ARCH_PROTOCOL has been installed,
then the Boot Service SetTimer() can be made available. The DXE Foundation can use the
services of the EFI_TIMER_ARCH_PROTOCOL to initialize and hook a heartbeat timer interrupt
for the DXE Foundation. The DXE Foundation can use this heartbeat timer interrupt to determine
when to signal on-shot and periodic timer events. This service may be called before the
EFI_TIMER_ARCH_PROTOCOL is installed. However, since a heartbeat timer is not running yet,
time is essentially frozen at zero. This means that no periodic or one-shot timer events will fire until
the EFI_TIMER_ARCH_PROTOCOL is installed.

9.7.1.2 RaiseTPL()
The DXE Foundation must produce the Boot Service RaiseTPL() when the memory-based
services are initialized. The DXE Foundation is guaranteed to be handed control of the platform
with interrupts disabled. Until the DXE Foundation installs a heartbeat timer interrupt and turns on
interrupts, this Boot Service can be a very simple function that always succeeds. When the DXE
Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed, then the full
version of the Boot Service RaiseTPL() can be made available. When an attempt is made to raise
the TPL level to EFI_TPL_HIGH_LEVEL or higher, then the DXE Foundation should use the
services of the EFI_CPU_ARCH_PROTOCOL to disable interrupts.

9.7.1.3 RestoreTPL()
The DXE Foundation must produce the Boot Service RestoreTPL() when the memory-based
services are initialized. The DXE Foundation is guaranteed to be handed control of the platform
with interrupts disabled. Until the DXE Foundation installs a heartbeat timer interrupt and turns on
interrupts, this Boot Service can be a very simple function that always succeeds. When the DXE
Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed, then the full

StartImage HOB list

UnloadImage HOB list

EFI_IMAGE_ENTRY_POINT HOB list

Exit HOB list

ExitBootServices HOB list

SetWatchDogTimer Watchdog Architectural Protocol

Stall Metronome Architectural Protocol
Timer Architectural Protocol

CopyMem HOB list

SetMem HOB list

GetMemory Map HOB list

GetMemorySpaceMap GCD Service

GetNextMonotonicCount Monotonic Counter Architectural Protocol

InstallConfigurationTable HOB list

CalculateCrc32 Runtime Architectural Protocol

Name Dependency

Platform Initialization Specification VOLUME 2 DXE Core Interface

90 3/15/2016 Version 1.4 Errata A

version of the Boot Service RestoreTPL() can be made available. When an attempt is made to
restore the TPL level to level below EFI_TPL_HIGH_LEVEL, then the DXE Foundation should
use the services of the EFI_CPU_ARCH_PROTOCOL to enable interrupts.

9.7.1.4 SetWatchdogTimer()
When the DXE Foundation is notified that the EFI_WATCHDOG_ARCH_PROTOCOL has been
installed, then the Boot Service SetWatchdogTimer() can be made available. The DXE
Foundation can use the services of the EFI_WATCHDOG_TIMER_ARCH_PROTOCOL to set the
amount of time before the system’s watchdog timer will expire.

9.7.1.5 Stall()
When the DXE Foundation is notified that the EFI_METRONOME_ARCH_PROTOCOL has been
installed, the DXE Foundation can produce a very simple version of the Boot Service Stall().
The granularity of the Boot Service Stall() will be based on the period of the
EFI_METRONOME_ARCH_PROTOCOL.

When the DXE Foundation is notified that the EFI_TIMER_ARCH_PROTOCOL has been installed,
the DXE Foundation can possibly produce a more accurate version of the Boot Service Stall().
This all depends on the periods of the EFI_METRONOME_ARCH_PROTOCOL and the period of the
EFI_TIMER_ARCH_PROTOCOL. The DXE Foundation should produce the Boot Service
Stall() using the most accurate time base available.

9.7.1.6 GetNextMonotonicCount()
When the DXE Foundation is notified that the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL
has been installed, then the Boot Service GetNextMonotonicCount() is available. The DXE
driver that produces the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL is responsible for
directly updating the GetNextMonotonicCount field of the UEFI Boot Services Table. The
DXE Foundation is only responsible for updating the 32-bit CRC of the UEFI Boot Services Table.

9.7.1.7 CalculateCrc32()
When the DXE Foundation is notified that the EFI_RUNTIME_ARCH_PROTOCOL has been
installed, then the Boot Service CalculateCrc32() is available. The DXE driver that produces
the EFI_RUNTIME_ARCH_PROTOCOL is responsible for directly updating the
CalculateCrc32 field of the UEFI Boot Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the UEFI Boot Services Table.

9.7.1.8 GetMemoryMap()
The GetMemoryMap() implementation must include into the UEFI memory map all GCD map
entries of types EfiGcdMemoryTypeReserved and EfiPersistentMemory, and all GCD
map entries of type EfiGcdMemoryTypeMemoryMappedIo that have
EFI_MEMORY_RUNTIME attribute set.

DXE Foundation

Version 1.4 Errata A 3/15/2016 91

9.7.2 UEFI Runtime Services Dependencies
Table 18 lists all the UEFI Runtime Services and the components upon which each of these services
depend. The topics that follow describe what responsibilities the DXE Foundation has in producing
the services that depend on the presence of DXE Architectural Protocols.

Table 18. Runtime Service Dependencies

9.7.2.1 GetVariable()
When the DXE Foundation is notified that the EFI_VARIABLE_ARCH_PROTOCOL has been
installed, then the Runtime Service GetVariable() is available. The DXE driver that produces
the EFI_VARIABLE_ARCH_PROTOCOL is responsible for directly updating the GetVariable
field of the UEFI Runtime Services Table. The DXE Foundation is only responsible for updating
the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.2 GetNextVariableName()
When the DXE Foundation is notified that the EFI_VARIABLE_ARCH_PROTOCOL has been
installed, then the Runtime Service GetNextVariableName() is available. The DXE driver
that produces the EFI_VARIABLE_ARCH_PROTOCOL is responsible for directly updating the
GetNextVariableName field of the UEFI Runtime Services Table. The DXE Foundation is
only responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.3 SetVariable()
When the DXE Foundation is notified that the EFI_VARIABLE_ARCH_PROTOCOL has been
installed, then the Runtime Service SetVariable() is available. The DXE driver that produces
the EFI_VARIABLE_ARCH_PROTOCOL is responsible for directly updating the SetVariable
field of the UEFI Runtime Services Table. The DXE Foundation is only responsible for updating
the 32-bit CRC of the UEFI Runtime Services Table. The EFI_VARIABLE_ARCH_PROTOCOL is

Name Dependency

GetVariable Variable Architectural Protocol

GetNextVariableName Variable Architectural Protocol

SetVariable Variable Architectural Protocol / Variable Write Architectural Protocol

GetTime Real Time Clock Architectural Protocol

SetTime Real Time Clock Architectural Protocol

GetWakeupTime Real Time Clock Architectural Protocol

SetWakeupTime Real Time Clock Architectural Protocol

SetVirtualAddressMap Runtime Architectural Protocol

ConvertPointer Runtime Architectural Protocol

ResetSystem Reset Architectural Protocol

GetNextHighMonotonicCount Monotonic Counter Architectural Protocol

UpdateCapsule Capsule Header Protocol

QueryCapsuleCapabilities Capsule Header Protocol

Platform Initialization Specification VOLUME 2 DXE Core Interface

92 3/15/2016 Version 1.4 Errata A

required to provide read-only access to all environment variables and write access to volatile
environment variables.

When the DXE Foundation is notified that the EFI_VARIABLE_WRITE_ARCH_PROTOCOL has
been installed, then write access to nonvolatile environment variables will also be available. If an
attempt is made to call this function for a nonvolatile environment variable prior to the installation of
EFI_VARIABLE_WRITE_ARCH_PROTOCOL, then EFI_NOT_AVAILABLE_YET must be
returned. This allows for flexibility in the design and implementation of the variables services in a
platform such that read access to environment variables can be provided very early in the DXE phase
and write access to nonvolatile environment variables can be provided later in the DXE phase.

9.7.2.4 GetTime()
When the DXE Foundation is notified that the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL has
been installed, then the Runtime Service GetTime() is available. The DXE driver that produces
the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL is responsible for directly updating the
GetTime field of the UEFI Runtime Services Table. The DXE Foundation is only responsible for
updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.5 SetTime()
When the DXE Foundation is notified that the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL has
been installed, then the Runtime Service SetTime() is available. The DXE driver that produces
the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL is responsible for directly updating the
SetTime field of the UEFI Runtime Services Table. The DXE Foundation is only responsible for
updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.6 GetWakeupTime()
When the DXE Foundation is notified that the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL has
been installed, then the Runtime Service GetWakeupTime() is available. The DXE driver that
produces the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL is responsible for directly updating
the GetWakeupTime field of the UEFI Runtime Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.7 SetWakeupTime()
When the DXE Foundation is notified that the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL has
been installed, then the Runtime Service SetWakeupTime() is available. The DXE driver that
produces the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL is responsible for directly updating
the SetWakeupTime field of the UEFI Runtime Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.8 SetVirtualAddressMap()
When the DXE Foundation is notified that the EFI_RUNTIME_ARCH_PROTOCOL has been
installed, then the Runtime Service SetVirtualAddressMap() is available. The DXE driver
that produces the EFI_RUNTIME_ARCH_PROTOCOL is responsible for directly updating the
SetVirtualAddressMap field of the UEFI Runtime Services Table. The DXE Foundation is
only responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

DXE Foundation

Version 1.4 Errata A 3/15/2016 93

9.7.2.9 ConvertPointer()
When the DXE Foundation is notified that the EFI_RUNTIME_ARCH_PROTOCOL has been
installed, then the Runtime Service ConvertPointer() is available. The DXE driver that
produces the EFI_RUNTIME_ARCH_PROTOCOL is responsible for directly updating the
ConvertPointer field of the UEFI Runtime Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.10 ResetSystem()
When the DXE Foundation is notified that the EFI_RESET_ARCH_PROTOCOL has been
installed, then the Runtime Service ResetSystem() is available. The DXE driver that produces
the EFI_RESET_ARCH_PROTOCOL is responsible for directly updating the Reset field of the
UEFI Runtime Services Table. The DXE Foundation is only responsible for updating the 32-bit
CRC of the UEFI Runtime Services Table.

9.7.2.11 GetNextHighMonotonicCount()
When the DXE Foundation is notified that the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL
has been installed, then the Runtime Service GetNextHighMonotonicCount() is available.
The DXE driver that produces the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL is
responsible for directly updating the GetNextHighMonotonicCount field of the UEFI
Runtime Services Table. The DXE Foundation is only responsible for updating the 32-bit CRC of
the UEFI Runtime Services Table.

9.7.3 DXE Services Dependencies
Table 19 lists all the DXE Services and the components upon which each of these services depend.
The topics that follow describe what responsibilities the DXE Foundation has in producing the
services that depend on the presence of DXE Architectural Protocols.

Table 19. DXE Service Dependencies

Name Dependency

AddMemorySpace HOB list

AllocateMemorySpace HOB list

FreeMemorySpace HOB list

RemoveMemorySpace HOB list

GetMemorySpaceDescriptor CPU Architectural Protocol

SetMemorySpaceAttributes CPU Architectural Protocol

GetMemorySpaceMap CPU Architectural Protocol

AddIoSpace HOB list

AllocateIoSpace HOB list

FreeIoSpace HOB list

RemoveIoSpace HOB list

GetIoSpaceDescriptor HOB list

GetIoSpaceMap HOB list

Platform Initialization Specification VOLUME 2 DXE Core Interface

94 3/15/2016 Version 1.4 Errata A

9.7.3.1 GetMemorySpaceDescriptor()
When the DXE Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed,
then the DXE Service GetMemorySpaceDescriptor() is fully functional. This function is
made available when the memory-based services are initialized. However, the Attributes field
of the EFI_GCD_MEMORY_SPACE_DESCRIPTOR is not valid until the
EFI_CPU_ARCH_PROTOCOL is installed.

9.7.3.2 SetMemorySpaceAttributes()
When the DXE Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed,
then the DXE Service SetMemorySpaceAttributes() can be made available. The DXE
Foundation can then use the SetMemoryAttributes() service of the
EFI_CPU_ARCH_PROTOCOL to implement the DXE Service
SetMemorySpaceAttributes().

9.7.3.3 GetMemorySpaceMap()
When the DXE Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed,
then the DXE Service GetMemorySpaceMap() is fully functional. This function is made
available when the memory-based services are initialized. However, the Attributes field of the
array of EFI_GCD_MEMORY_SPACE_DESCRIPTORs is not valid until the
EFI_CPU_ARCH_PROTOCOL is installed.

9.8 HOB Translations

9.8.1 HOB Translations Overview
The following topics describe how the DXE Foundation should interpret the contents of the HOB list
to initialize the GCD memory space map, GCD I/O space map, and UEFI memory map. After all of
the HOBs have been parsed, the Boot Service GetMemoryMap() and the DXE Services
GetMemorySpaceMap() and GetIoSpaceMap() should reflect the memory resources, I/O
resources, and logical memory allocations described in the HOB list.

SeeVolume 3 for detailed information on HOBs.

9.8.2 PHIT HOB
The Phase Handoff Information Table (PHIT) HOB describes a region of tested system memory.
This region of memory contains the following:

• HOB list

• Some amount of free memory

• Potentially some logical memory allocations

The PHIT HOB is used by the DXE Foundation to determine the size of the HOB list so that the
DXE Foundation can relocate the HOB list to a new location in system memory. The base address

Schedule HOB list

DXE Foundation

Version 1.4 Errata A 3/15/2016 95

of the HOB list is passed to the DXE Foundation in the parameter HobStart, and the PHIT HOB
field EfiFreeMemoryBottom specifies the end of the HOB list.

Since the PHIT HOB may contain some of amount of free memory, the DXE Foundation may use
this free memory region in its early initialization phase until the full complement of UEFI memory
services are available.

See Volume 3 for the definition of this HOB type.

9.8.3 CPU HOB
The CPU HOB contains the field SizeOfMemorySpaceMap . This field is used to initialize the
GCD memory space map. The SizeOfMemorySpaceMap field defines the number of address
bits that the processor can use to address memory resources. The DXE Foundation must create the
primordial GCD memory space map entry of type EfiGcdMemoryTypeNonExistent for the
region from 0 to (1 << SizeOfMemorySpaceMap). All future GCD memory space operations
must be performed within this memory region.

The CPU HOB also contains the field SizeOfIoSpaceMap . This field is used to initialize the
GCD I/O space map. The SizeOfIoSpaceMap field defines the number of address bits that the
processor can use to address I/O resources. The DXE Foundation must create the primordial GCD
I/O space map entry of type EfiGcdIoTypeNonExistent for the region from 0 to (1 <<
SizeOfIoSpaceMap). All future GCD I/O space operations must be performed within this I/O
region.

See Volume 3 for the definition of this HOB type.

9.8.4 Resource Descriptor HOBs
The DXE Foundation must traverse the HOB list looking for Resource Descriptor HOBs. These
HOBs describe memory and I/O resources that are visible to the processor. All of the resource
ranges described in these HOBs must fall in the memory and I/O ranges initialized in the GCD maps
based on the contents of the CPU HOB. The DXE Foundation will use the DXE Services
AddMemorySpace() and AddIoSpace() to register these memory and I/O resources in the
GCD maps.

The Owner field of the Resource Descriptor HOB is ignored by the DXE Foundation. The
ResourceType field and ResourceAttribute fields are used to determine the GCD memory
type or GCD I/O type of the resource. The table below shows this mapping. The resource range is
specified by the PhysicalStart and ResourceLength fields of the Resource Descriptor
HOB.

The ResourceAttribute field also contains the caching capabilities of memory regions. If a
memory region is being added to the GCD memory space map, then the ResourceAttribute
field will be used to initialize the supported caching capabilities. The ResourceAttribute
field is also be used to further qualify memory regions. For example, a system memory region
cannot be added to the UEFI memory map if it is read protected. However, it is legal to add a
firmware device memory region that is write-protected if the firmware device is a ROM.

See Volume 3 for the definition of this HOB type.

Platform Initialization Specification VOLUME 2 DXE Core Interface

96 3/15/2016 Version 1.4 Errata A

Table 20. Resource Descriptor HOB to GCD Type Mapping

9.8.5 Firmware Volume HOBs
The DXE Foundation must traverse the HOB list for Firmware Volume HOBs. There are two types
of firmware volume HOBs:

• EFI_HOB_FIRMWARE_VOLUME, which describes PI Firmware Volumes.

• EFI_HOB_FIRMWARE_VOLUME2 which describes PI Firmware Volumes which came from a
firmware file within a firmware volume.

When the DXE Foundation discovers a Firmware Volume HOB, the DXE Dispatcher verifies that
the firmware volume has not been previously processed. Then a new handle must be created in the
handle database, and the EFI_FIRMWARE_VOLUME2_PROTOCOL must be installed on that
handle. The BaseAddress and Length fields of the Firmware Volume HOB specific the
memory range that the firmware volume consumes. The DXE Service
AllocateMemorySpace() is used to allocate the memory regions described in the Firmware
Volume HOBs to the DXE Foundation. The UEFI Boot Service
InstallProtocolInterface() is used to create new handles and install protocol interfaces.

See the Platform Initialization Specification, Volume 3, for code definitions concerning Hand-Off
Blocks, the Firmware Volume Block Protocol and the Firmware Volume Protocol.

9.8.6 Memory Allocation HOBs
Memory Allocation HOBs describe logical memory allocations that occurred prior to the DXE
phase. The DXE Foundation must parse the HOB list for this HOB type. When a HOB of this type
is discovered, the GCD memory space map must be updated with a call to the DXE Service
AllocateMemorySpace(). In addition, the UEFI memory map must be updated with logical
allocation described by the MemoryType, MemoryBaseAddress, and MemoryLength fields
of the Memory Allocation HOB.

Once the DXE Foundation has parsed all of the Memory Allocation HOBs, all of the unallocated
system memory regions in the GCD memory space map must be allocated to the DXE Foundation
with the DXE Service AllocateMemorySpace(). In addition, those same memory regions

Resource Descriptor HOB GCD Map

Resource Type Attributes Memory Type I/O Type

System Memory Present Reserved

System Memory Present AND Initialized Reserved

System Memory Present AND Initialized AND Tested System Memory

Memory-Mapped I/O Memory Mapped I/O

Firmware Device Memory Mapped I/O

Memory-Mapped I/O
Port

Reserved

Memory Reserved Reserved

I/O I/O

I/O Reserved Reserved

DXE Foundation

Version 1.4 Errata A 3/15/2016 97

must be added to the UEFI memory map so those memory regions can be allocated and freed using
the Boot Services AllocatePages(), AllocatePool(), FreePages(), and
FreePool().

See Volume 3 for the definition of this HOB type.

9.8.7 GUID Extension HOBs
The DXE Foundation does not require any GUID Extension HOBs. Implementations of the DXE
Foundation may use GUID Extension HOBs but shall not require them in order to function correctly.
GUID Extension HOBs contain private or implementation-specific data that is being passed from the
previous execution phase to a specific DXE driver. DXE drivers may choose to parse the HOB list
for GUID Extension HOBs.

See Volume 3 for the definition of this HOB type.

Platform Initialization Specification VOLUME 2 DXE Core Interface

98 3/15/2016 Version 1.4 Errata A

Version 1.4 Errata A 3/15/2016 99

10
DXE Dispatcher

10.1 Introduction
After the DXE Foundation is initialized, control is handed to the DXE Dispatcher. The DXE
Dispatcher examines every firmware volume that is present in the system. Firmware volumes are
either declared by HOBs, or they are declared by DXE drivers. For the DXE Dispatcher to run, at
least one firmware volume must be declared by a HOB.

The DXE Dispatcher is responsible for loading and invoking DXE drivers found in firmware
volumes. Some DXE drivers may depend on the services produced by other DXE drivers, so the
DXE Dispatcher is also required to execute the DXE drivers in the correct order. The DXE drivers
may also be produced by a variety of different vendors, so the DXE drivers must describe the
services they depend upon. The DXE dispatcher must evaluate these dependencies to determine a
valid order to execute the DXE drivers. Some vendors may wish to specify a fixed execution order
for some or all of the DXE drivers in a firmware volume, so the DXE dispatcher must support this
requirement.

The DXE Dispatcher will ignore file types that it does not recognize.

In addition, the DXE Dispatcher must support the ability to load “emergency patch” drivers. These
drivers would be added to the firmware volume to address an issue that was not know at the time the
original firmware was built. These DXE drivers would be loaded just before or just after an existing
DXE driver.

Finally, the DXE Dispatcher must be flexible enough to support a variety of platform specific
security policies for loading and executing DXE drivers from firmware volumes. Some platforms
may choose to run DXE drivers with no security checks, and others may choose to check the validity
of a firmware volume before it is used, and other may choose to check the validity of every DXE
driver in a firmware volume before it is executed.

10.2 Requirements
The DXE Dispatcher must meet the following requirement:

• Support fixed execution order of DXE drivers. This fixed execution order is specified in an
a priori file in the firmware volume.

• Determine DXE driver execution order based on each driver’s dependencies. A DXE
driver that is stored in a firmware volume may optionally contain a dependency expression
section. This section specifies the protocols that the DXE driver requires to execute.

• Support “emergency patch” DXE drivers. The dependency expressions are flexible enough
to describe the protocols that a DXE drivers may require. In addition, the dependency
expression can declare that the DXE driver is to be loaded and executed immediately before or
immediately after a different DXE driver.

Platform Initialization Specification VOLUME 2 DXE Core Interface

100 3/15/2016 Version 1.4 Errata A

• Support platform specific security policies for DXE driver execution. The DXE Dispatcher
is required to use the services of the Security Architecture Protocol every time a firmware
volume is discovered and every time a DXE driver is loaded.

When a new firmware volume is discovered, it is first authenticated with the Security Architectural
Protocol. The Security Architectural Protocol provides the platform-specific policy for validating
all firmware volumes. Then, a search is made for the a priori file. The a priori file has a fixed file
name, and it contains the list of DXE drivers that should be loaded and executed first. There can be
at most one a priori file per firmware volume, and it is legal to have zero a priori files in a firmware
volume. Once the DXE drivers from the a priori file have been loaded and executed, the
dependency expressions of the remaining DXE drivers in the firmware volumes are evaluated to
determine the order that they will be loaded and executed. The a priori file provides a strongly
ordered list of DXE drivers that are not required to use dependency expressions. The dependency
expressions provide a weakly ordered execution of the remaining DXE drivers.

The DXE Dispatcher loads the image using LoadImage() with the FilePath parameter
pointing ot the firmware volume from which the image is located.

Before each DXE driver is executed, it must be authenticated through the Security Architectural
Protocol. The Security Architectural Protocol provides the platform-specific policy for validating
all DXE drivers.

Control is transferred from the DXE Dispatcher to the BDS Architectural Protocol after the DXE
drivers in the a priori file and all the DXE drivers whose dependency expressions evaluate to TRUE
have been loaded and executed. The BDS Architectural Protocol is responsible for establishing the
console devices and attempting the boot of operating systems. As the console devices are
established and access to boot devices is established, additional firmware volumes may be
discovered. If the BDS Architectural Protocol is unable to start a console device or gain access to a
boot device, it will reinvoke the DXE Dispatcher. This will allow the DXE Dispatcher to load and
execute DXE drivers from firmware volumes that have been discovered since the last time the DXE
Dispatcher was invoked. Once the DXE Dispatcher has loaded and executed all the DXE drivers it
can, control is once again returned to the BDS Architectural Protocol to continue the OS boot
process.

10.3 The A Priori File
The a priori file is a special file that may be present in a firmware volume. The a priori file format

described herein must be supported if the DXE Foundation implementation also supports 3rd party
firmware volumes. The rule is that there may be at most one a priori file per firmware volume
present in a platform. The a priori file has a known GUID file name, so the DXE Dispatcher can
always find the a priori file if it is present. Every time the DXE Dispatcher discovers a firmware
volume, it first looks for the a priori file. The a priori file contains the list of DXE drivers from that
firmware volume that should be loaded and executed before any other DXE drivers are discovered.
The DXE drivers listed in the a priori file are executed in the order that they appear. If any of those
DXE drivers have an associated dependency expression, then those dependency expressions are
ignored. The a priori file provides a deterministic execution order of DXE drivers. DXE drivers
that are executed solely based on their dependency expression are weakly ordered. This means that
the execution order is not completely deterministic between boots or between platforms. There are
cases where a deterministic execution order is required. One example would be to list the DXE

DXE Dispatcher

Version 1.4 Errata A 3/15/2016 101

drivers required to debug the rest of the DXE phase in the a priori file. These DXE drivers that
provide debug services may have been loaded much later if only their dependency expressions were
considered. By loading them earlier, more of the DXE Foundation and DXE drivers can be
debugged. Another example is to use the a priori file to eliminate the need for dependency
expressions. Some embedded platforms may only require a few DXE drivers with a highly
deterministic execution order. The a priori file can provide this ordering, and none of the DXE
drivers would require dependency expressions. The dependency expressions do have some amount
of size overhead, so this method may reduce the size of firmware images. The main purpose of the
a priori file is to provide a greater degree of flexibility in the firmware design of a platform.

See the next topic for the GUID definition of the a priori file, which is the file name that is stored in
a firmware volume.

The a priori file contains the file names of DXE drivers that are stored in the same firmware volume
as the a priori file. File names in firmware volumes are GUIDs, so the a priori file is simply a list of
byte-packed values of type EFI_GUID. Type EFI_GUID is defined in the UEFI 2.0 specification.
The DXE Dispatcher reads the list of EFI_GUIDs from the a priori file. Each EFI_GUID is used
to load and execute the DXE driver with that GUID file name. If the DXE driver specified by the
GUID file name is not found in the firmware volume, then the file is skipped. If the a priori file is
not en even multiple of EFI_GUIDs in length, then the DXE driver specified by the last EFI_GUID
in the a priori file is skipped.

After all of the DXE drivers listed in the a priori file have been loaded and executed, the DXE
Dispatcher searches the firmware volume for any additional DXE drivers and executed them
according to their dependency expressions.

EFI_APRIORI_GUID

The following GUID definition is the file name of the a priori file that is stored in a firmware
volume. This file must be of type EFI_FV_FILETYPE_FREEFORM and must contain a single
section of type EFI_SECTION_RAW. For details on firmware volumes, firmware file types, and
firmware file section types, see the Platform Initialization Specification, Volume 3 .

GUID
#define EFI_APRIORI_GUID \
 {0xfc510ee7,0xffdc,0x11d4,0xbd,0x41,0x0,0x80,
 0xc7,0x3c,0x88,0x81}

10.4 Firmware Volume Image Files
For DXE, while processing a firmware volume, if a file of type
EFI_FV_FIRMWARE_VOLUME_IMAGE is found, the DXE Dispatcher will check whether
information about this firmware volume image file was already described in an
EFI_FIRMWARE_VOLUME_HOB2. If it was, then the file is ignored.

Otherwise, the DXE Dispatcher will search the file for a section with the type
EFI_SECTION_DXE_DEPEX, and if found, evaluate the expression against the presently installed
entries in the protocol database.

Platform Initialization Specification VOLUME 2 DXE Core Interface

102 3/15/2016 Version 1.4 Errata A

If the file has both a dependency expression that evaluates to TRUE (or no dependency expression
section) and the file is not already described by an EFI_FIRMWARE_VOLUME_HOB2, then the
DXE Dispatcher will search the file for a section with the type
EFI_SECTION_FIRMWARE_VOLUME_IMAGE, copy its contents into memory, create a handle
and install the EFI_FIRMWMARE_VOLUME2_PROTOCOL and
EFI_DEVICE_PATH_PROTOCOL on the handle.

10.5 Dependency Expressions

10.6 Dependency Expressions Overview
A DXE driver is stored in a firmware volume as a file with one or more sections. One of the sections
must be a PE32+ image. If a DXE driver has a dependency expression, then it is stored in a
dependency section. A DXE driver may contain additional sections for compression and security
wrappers. The DXE Dispatcher can identify the DXE drivers by their file type. In addition, the
DXE Dispatcher can look up the dependency expression for a DXE driver by looking for a
dependency section in a DXE driver file. The dependency section contains a section header
followed by the actual dependency expression that is composed of a packed byte stream of opcodes
and operands.

Dependency expressions stored in dependency sections are designed to be small to conserve space.
In addition, they are designed to be simple and quick to evaluate to reduce execution overhead.
These two goals are met by designing a small, stack based, instruction set to encode the dependency
expressions. The DXE Dispatcher must implement an interpreter for this instruction set in order to
evaluate dependency expressions. The instruction set is defined in the following topics.

See “Dependency Expression Grammar” on page 203 for an example BNF grammar for a
dependency expression compiler. There are many possible methods of specifying the dependency
expression for a DXE driver. Dependency Expression Grammar demonstrates one possible design
for a tool that can be used to help build DXE driver images.

10.7 Dependency Expression Instruction Set
The following topics describe each of the dependency expression opcodes in detail. Information
includes a description of the instruction functionality, binary encoding, and any limitations or unique
behaviors of the instruction.

Several of the opcodes require a GUID operand. The GUID operand is a 16-byte value that matches
the type EFI_GUID that is described in the UEFI 2.0 specification. These GUIDs represent
protocols that are produced by DXE drivers and the file names of DXE drivers stored in firmware
volumes. A dependency expression is a packed byte stream of opcodes and operands. As a result,
some of the GUID operands will not be aligned on natural boundaries. Care must be taken on
processor architectures that do allow unaligned accesses.

The dependency expression is stored in a packed byte stream using postfix notation. As a
dependency expression is evaluated, the operands are pushed onto a stack. Operands are popped off
the stack to perform an operation. After the last operation is performed, the value on the top of the
stack represents the evaluation of the entire dependency expression. If a push operation causes a

DXE Dispatcher

Version 1.4 Errata A 3/15/2016 103

stack overflow, then the entire dependency expression evaluates to FALSE. If a pop operation
causes a stack underflow, then the entire dependency expression evaluates to FALSE. Reasonable
implementations of a dependency expression evaluator should not make arbitrary assumptions about
the maximum stack size it will support. Instead, it should be designed to grow the dependency
expression stack as required. In addition, DXE drivers that contain dependency expressions should
make an effort to keep their dependency expressions as small as possible to help reduce the size of
the DXE driver.

All opcodes are 8-bit values, and if an invalid opcode is encountered, then the entire dependency
expression evaluates to FALSE.

If an END opcode is not present in a dependency expression, then the entire dependency expression
evaluates to FALSE.

If an instruction encoding extends beyond the end of the dependency section, then the entire
dependency expression evaluates to FALSE.

The final evaluation of the dependency expression results in either a TRUE or FALSE result.

Table 21 is a summary of the opcodes that are used to build dependency expressions. The following
topics describe each of these instructions in detail.

Table 21. Dependency Expression Opcode Summary

Opcode Description

0x00 BEFORE <File Name GUID>

0x01 AFTER <File Name GUID>

0x02 PUSH <Protocol GUID>

0x03 AND

0x04 OR

0x05 NOT

0x06 TRUE

0x07 FALSE

0x08 END

0x09 SOR

Platform Initialization Specification VOLUME 2 DXE Core Interface

104 3/15/2016 Version 1.4 Errata A

BEFORE

Syntax
BEFORE <File Name GUID>

Description
This opcode tells the DXE Dispatcher that the DXE driver that is associated with this dependency
expression must be dispatched just before the DXE driver with the file name specified by GUID.
This means that as soon as the dependency expression for the DXE driver specified by GUID
evaluates to TRUE, then this DXE driver must be placed in the dispatch queue just before the DXE
driver with the file name specified by GUID.

Operation
None.

Table 22 defines the BEFORE instruction encoding.

Table 22. BEFORE Instruction Encoding

Behaviors and Restrictions
If this opcode is present in a dependency expression, it must be the first and only opcode in the
expression. If is appears in any other location in the dependency expression, then the dependency
expression is evaluated to FALSE.

Byte Description

0 0x00

1..16 A 16-byte GUID that represents the file name of a different DXE driver. The format is the same

as type EFI_GUID.

DXE Dispatcher

Version 1.4 Errata A 3/15/2016 105

AFTER

Syntax
AFTER <File Name GUID>

Description
This opcode tells the DXE Dispatcher that the DXE driver that is associated with this dependency
expression must be dispatched just after the DXE driver with the file name specified by GUID. This
means that as soon as the dependency expression for the DXE driver specified by GUID evaluates to
TRUE, then this DXE driver must be placed in the dispatch queue just after the DXE Driver with the
file name specified by GUID.

Operation
None.

Table 23 defines the AFTER instruction encoding.

Table 23. AFTER Instruction Encoding

Behaviors and Restrictions
If this opcode is present in a dependency expression, it must be the first and only opcode in the
expression. If is appears in any other location in the dependency expression, then the dependency
expression is evaluated to FALSE.

Byte Description

0 0x01

1..16 A 16-byte GUID that represents the file name of a different DXE driver. The format is the

same as type EFI_GUID.

Platform Initialization Specification VOLUME 2 DXE Core Interface

106 3/15/2016 Version 1.4 Errata A

PUSH

Syntax
PUSH <Protocol GUID>

Description
Pushes a Boolean value onto the stack. If the GUID is present in the handle database, then a TRUE is
pushed onto the stack. If the GUID is not present in the handle database, then a FALSE is pushed
onto the stack. The test for the GUID in the handle database may be performed with the Boot
Service LocateProtocol().

Operation
Status = gBS->LocateProtocol (GUID, NULL, &Interface);
if (EFI_ERROR (Status)) {
 PUSH FALSE;
} Else {
 PUSH TRUE;
}

Table 24 defines the PUSH instruction encoding.

Table 24. PUSH Instruction Encoding

Behaviors and Restrictions
None.

Byte Description

0 0x02

1..16 A 16-byte GUID that represents a protocol that is produced by a different DXE driver. The

format is the same at type EFI_GUID.

DXE Dispatcher

Version 1.4 Errata A 3/15/2016 107

AND

Syntax
AND

Description
Pops two Boolean operands off the stack, performs a Boolean AND operation between the two
operands, and pushes the result back onto the stack.

Operation
Operand1 <= POP Boolean stack element
Operand2 <= POP Boolean stack element
Result <= Operand1 AND Operand2
PUSH Result

Table 25 defines the AND instruction encoding.

Table 25. AND Instruction Encoding

Behaviors and Restrictions
None.

Byte Description

0 0x03.

Platform Initialization Specification VOLUME 2 DXE Core Interface

108 3/15/2016 Version 1.4 Errata A

OR

Syntax
OR

Description
Pops two Boolean operands off the stack, performs a Boolean OR operation between the two
operands, and pushes the result back onto the stack.

Operation
Operand1 <= POP Boolean stack element
Operand2 <= POP Boolean stack element
Result <= Operand1 OR Operand2
PUSH Result

Table 26 defines the OR instruction encoding.

Table 26. OR Instruction Encoding

Behaviors and Restrictions
None.

Byte Description

0 0x04.

DXE Dispatcher

Version 1.4 Errata A 3/15/2016 109

NOT

Syntax
NOT

Description
Pops a Boolean operands off the stack, performs a Boolean NOT operation on the operand, and
pushes the result back onto the stack.

Operation
Operand <= POP Boolean stack element
Result <= NOT Operand1
PUSH Result

Table 27 defines the NOT instruction encoding.

Table 27. NOT Instruction Encoding

Behaviors and Restrictions
None.

Byte Description

0 0x05.

Platform Initialization Specification VOLUME 2 DXE Core Interface

110 3/15/2016 Version 1.4 Errata A

TRUE

Syntax
TRUE

Description
Pushes a Boolean TRUE onto the stack.

Operation
PUSH TRUE

Table 28 defines the TRUE instruction encoding.

Table 28. TRUE Instruction Encoding

Behaviors and Restrictions
None.

Byte Description

0 0x06.

DXE Dispatcher

Version 1.4 Errata A 3/15/2016 111

FALSE

Syntax
FALSE

Description
Pushes a Boolean FALSE onto the stack.

Operation
PUSH FALSE

Table 29 defines the FALSE instruction encoding.

Table 29. FALSE Instruction Encoding

Behaviors and Restrictions
None.

Byte Description

0 0x07.

Platform Initialization Specification VOLUME 2 DXE Core Interface

112 3/15/2016 Version 1.4 Errata A

END

Syntax
END

Description
Pops the final result of the dependency expression evaluation off the stack and exits the dependency
expression evaluator.

Operation
POP Result
RETURN Result

Table 30 defines the END instruction encoding.

Table 30. END Instruction Encoding

Behaviors and Restrictions
This opcode must be the last one in a dependency expression.

Byte Description

0 0x08.

DXE Dispatcher

Version 1.4 Errata A 3/15/2016 113

SOR

Syntax
SOR

Description
Indicates that the DXE driver is to remain on the Schedule on Request (SOR) queue until the DXE
Service Schedule() is called for this DXE. The dependency expression evaluator treats this
operation like a No Operation (NOP).

Operation
None.

Table 31 defines the SOR instruction encoding.

Table 31. SOR Instruction Encoding

Behaviors and Restrictions
• If this instruction is present in a dependency expression, it must be the first instruction in the

expression. If it appears in any other location in the dependency expression, then the
dependency expression is evaluated to FALSE.

• This instruction must be followed by a valid dependency expression. If this instruction is the
last instruction or it is followed immediately by an END instruction, then the dependency
expression is evaluated to FALSE.

Byte Description

0 0x09.

Platform Initialization Specification VOLUME 2 DXE Core Interface

114 3/15/2016 Version 1.4 Errata A

10.8 Dependency Expression with No Dependencies
A DXE driver that does not have any dependencies must have a dependency expression that
evaluates to TRUE with no dependencies on any protocol GUIDs or file name GUIDs. The DXE
Dispatcher will queue all the DXE drivers of this type immediately after the a priori file has been
processed.

The following code example shows the dependency expression for a DXE driver that does not have
any dependencies using the BNF grammar listed in Dependency Expression Grammar. This is
followed by the 2-byte dependency expression that is encoded using the instruction set described in
“Dependency Expression Instruction Set” on page 102.
//
// Source
//
TRUE
END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 06 TRUE
0x01 : 08 END

10.9 Empty Dependency Expressions
If a DXE driver file does not contain a dependency section, then the DXE driver has an empty
dependency expression. The DXE Foundation must support DXE driver and UEFI drivers that
conform to the UEFI 2.0 specification. These UEFI drivers assume that all the UEFI Boot Services
and UEFI Runtime Services are available. If an UEFI driver is added to a firmware volume, then the
UEFI driver will have an empty dependency expression, and it should not be loaded and executed by
the DXE Dispatcher until all the UEFI Boot Services and UEFI Runtime Services are available. The
DXE Foundation cannot guarantee that this condition is true until all of the DXE Architectural
Protocols have been installed.

From the DXE Dispatcher’s perspective, DXE drivers without dependency expressions cannot be
loaded until all of the DXE Architectural Protocols have been installed. This is equivalent to an
implied dependency expression of all the GUIDs of the architectural protocols ANDed together.
This implied dependency expression is shown below. The use of empty dependency expressions
may also save space, because DXE drivers that require all the UEFI Boot Services and UEFI
Runtime Services to be present can simply remove the dependency section from the DXE driver file.

The code example below shows the dependency expression that is implied by an empty dependency
expression using the BNF grammar listed in “Dependency Expression Grammar” on page 203. It
also shows the dependency expression after it has been encoded using the instruction set described in
“Dependency Expression Instruction Set” on page 102. This fairly complex dependency expression
is encoded into a dependency expression that is 216 bytes long. Typical dependency expressions
will contain 2 or 3 terms, so those dependency expressions will typically be less than 60 bytes long.

DXE Dispatcher

Version 1.4 Errata A 3/15/2016 115

//
// Source
//
EFI_BDS_ARCH_PROTOCOL_GUID AND
EFI_CPU_ARCH_PROTOCOL_GUID AND
EFI_METRONOME_ARCH_PROTOCOL_GUID AND
EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL_GUID AND
EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL_GUID AND
EFI_RESET_ARCH_PROTOCOL_GUID AND
EFI_RUNTIME_ARCH_PROTOCOL_GUID AND
EFI_SECURITY_ARCH_PROTOCOL_GUID AND
EFI_TIMER_ARCH_PROTOCOL_GUID AND
EFI_VARIABLE_ARCH_PROTOCOL_GUID AND
EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID AND
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL_GUID
END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 02 PUSH
0x01 : F6 3F 5E 66 CC 46 d4 11 EFI_BDS_ARCH_PROTOCOL_GUID
 9A 38 00 90 27 3F C1 4D
0x11 : 02 PUSH
0x12 : B1 CC BA 26 42 6F D4 11 EFI_CPU_ARCH_PROTOCOL_GUID
 BC E7 00 80 C7 3C 88 81
0x22 : 03 AND
0x23 : 02 PUSH
0x24 : B2 CC BA 26 42 6F d4 11 EFI_METRONOME_ARCH_PROTOCOL_GUID
 BC E7 00 80 C7 3C 88 81
0x34 : 02 PUSH
0x35 : 72 70 A9 1D DC BD 30 4B
EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL_GUID
 99 F1 72 A0 B5 6F FF 2A
0x45 : 03 AND
0x46 : 03 AND
0x47 : 02 PUSH
0x48 : 87 AC CF 27 CC 46 d4 11 EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL_GUID
 9A 38 00 90 27 3F C1 4D

0x58 : 02 PUSH
0x59 : 88 AC CF 27 CC 46 d4 11 EFI_RESET_ARCH_PROTOCOL_GUID
 9A 38 00 90 27 3F C1 4D
0x69 : 03 AND
0x6A : 02 PUSH
0x6B : 53 82 d0 96 83 84 d4 11 EFI_RUNTIME_ARCH_PROTOCOL_GUID
 BC F1 00 80 C7 3C 88 81

Platform Initialization Specification VOLUME 2 DXE Core Interface

116 3/15/2016 Version 1.4 Errata A

0x7B : 02 PUSH
0x7C : E3 23 64 A4 17 46 f1 49 EFI_SECURITY_ARCH_PROTOCOL_GUID
 B9 FF D1 BF A9 11 58 39
 82 CE 5A 89 0C CB 2C 95
0xA0 : 02 PUSH
0xA1 : B3 CC BA 26 42 6F D4 11 EFI_TIMER_ARCH_PROTOCOL_GUID
 BC E7 00 80 C7 3C 88 81
0xB1 : 03 AND
0xB2 : 02 PUSH
0xB3 : E2 68 56 1E 81 84 D4 11 EFI_VARIABLE_ARCH_PROTOCOL_GUID
 BC F1 00 80 C7 3C 88 81
0xC3 : 02 PUSH
0xC4 : 18 F8 41 64 62 63 44 4E EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID
 B5 70 7D BA 31 DD 24 53
0xD4 : 03 AND
0xD5 : 03 AND
0xD6 : 03 AND
0xD7 : 02 PUSH
0xD8 : F5 3F 5E 66 CC 46 d4 11 EFI_WATCHDOG_TIMER_ARCH_PROTOCOL_GUID
 9A 38 00 90 27 3F C1 4D
0xE8 : 03 AND
0xE9 : 08 END

10.10 Dependency Expression Reverse Polish Notation (RPN)
The actual equations will be presented by the DXE driver in a simple-to-evaluate form, namely
postfix.

The following is a BNF encoding of this grammar. See “Dependency Expression Instruction Set” on
page 102 for definitions of the dependency expressions.
<statement> ::= SOR <expression> END |
 BEFORE <guid> END |
 AFTER <guid> END |
 <expression> END

<expression> ::= PUSH <guid> |
 TRUE |
 FALSE |
 <expression> NOT |
 <expression> <expression> OR |
 <expression> <expression> AND

10.11 DXE Dispatcher State Machine
The DXE Dispatcher is responsible for tracking the state of a DXE driver from the time that the
DXE driver is discovered in a firmware volume until the DXE Foundation is terminated with a call
to ExitBootServices(). During this time, each DXE driver may be in one of several different
states. The state machine that the DXE Dispatcher must use to track a DXE driver is shown in
Figure 7.

DXE Dispatcher

Version 1.4 Errata A 3/15/2016 117

Figure 7. DXE Driver States

A DXE driver starts in the “Undiscovered” state, which means that the DXE driver is in a firmware
volume that the DXE Dispatcher does not know about yet. When the DXE Dispatcher discovers a
new firmware volume, any DXE drivers from that firmware volume listed in the a priori file are
immediately loaded and executed. DXE drivers listed in the a priori file are immediately promoted
to the “Scheduled” state. The firmware volume is then searched for DXE drivers that are not listed
in the a priori file. Any DXE drivers found are promoted from the “Undiscovered” to the
“Discovered” state. The dependency expression for each DXE driver is evaluated. If the SOR
opcode is present in a DXE driver’s dependency expression, then the DXE driver is placed in the
“Unrequested” state. If the SOR opcode is not present in the DXE driver’s dependency expression,
then the DXE driver is placed in the “Dependent” state. Once a DXE driver is in the "Unrequested”
state, it may only be promoted to the “Dependent” state with a call to the DXE Service
Schedule().

Once a DXE Driver is in the “Dependent” state, the DXE Dispatcher will evaluate the DXE driver’s
dependency expression. If the DXE driver does not have a dependency expression, then a
dependency expression of all the architectural protocols ANDed together is assumed for that DXE
driver. If the dependency expression evaluates to FALSE, then the DXE driver stays in the

Platform Initialization Specification VOLUME 2 DXE Core Interface

118 3/15/2016 Version 1.4 Errata A

“Dependent” state. If the dependency expression never evaluates to TRUE, then it will never leave
the “Dependent” state. If the dependency expression evaluates to TRUE, then the DXE driver will
be promoted to the “Scheduled” state.

A DXE driver that is prompted to the “Scheduled” state is added to the end of the queue of other
DXE drivers that have been promoted to the “Scheduled” state. When the DXE driver has reached
the head of the queue, the DXE Dispatcher must use the services of the Security Authentication
Protocol (SAP) to check the authentication status of the DXE Driver. If the Security Authentication
Protocol deems that the DXE Driver violates the security policy of the platform, then the DXE
Driver is placed in the “Untrusted” state. The Security Authentication Protocol can also tell the
DXE Dispatcher that the DXE driver should never be executed and be placed in the “Never Trusted”
state. If a DXE driver is placed in the “Untrusted” state, it can only be promoted back to the
“Scheduled” state with a call to the DXE Service Trust().

Once a DXE driver has reached the head of the scheduled queue, and the DXE driver has passed the
authentication checks of the Security Authentication Protocol, the DXE driver is loaded into
memory with the Boot Service LoadImage(). Control is then passed from the DXE Dispatcher to
the DXE driver with the Boot Service StartImage(). When StartImage() is called for a
DXE driver, that DXE driver is promoted to the “Initializing” state. The DXE driver returns control
to the DXE Dispatcher through the Boot Service Exit(). When a DXE driver has returned control
to the DXE Dispatcher, the DXE driver is in the terminal state called “Initialized.”

The DXE Dispatcher is responsible for draining the queue of DXE drivers in the “Scheduled” state
until the queue is empty. Once the queue is empty, then DXE Dispatcher must evaluate all the DXE
drivers in the "Dependent” state to see if any of them need to be promoted to the “Scheduled” state.
These evaluations need to be performed every time one or more DXE drivers have been promoted to
the “Initialized” state, because those DXE drivers may have produced protocol interfaces for which
the DXE drivers in the "Dependent” state are waiting.

10.12 Example Orderings
The order that DXE drivers are loaded and executed by the DXE Dispatcher is a mix of strong and
weak orderings. The strong orderings are specified through a priori files, and the weak orderings
are specified by dependency expressions in DXE drivers. Figure 8 shows the contents of a sample
firmware volume that contains the following:

• DXE Foundation image

• DXE driver images

• An a priori file

The order that these images appear in the firmware volume is arbitrary. The DXE Foundation and
the DXE Dispatcher must not make any assumptions about the locations of files in firmware
volumes. The a priori file contains the GUID file names of the DXE drivers that are to be loaded
and executed first. The dependency expressions and the protocols that each DXE driver produces is
shown next to each DXE driver image in the firmware volume.

DXE Dispatcher

Version 1.4 Errata A 3/15/2016 119

Figure 8. Sample Firmware Volume

Based on the contents of the firmware volume in the figure above, the Security Driver, Runtime
Driver, and Variable Driver will always be executed first. This is an example of a strongly ordered
dispatch due to the a priori file. The DXE Dispatcher will then evaluate the dependency expressions
of the remaining DXE drivers to determine the order that they will be executed. Based on the
dependency expressions and the protocols that each DXE driver produces, there are 30 valid
orderings from which the DXE Dispatcher may choose. The BDS Driver and CPU Driver tie for the
next drivers to be scheduled, because their dependency expressions are simply TRUE. A
dependency expression of TRUE means that the DXE driver does not require any other protocol
interfaces to be executed. The DXE Dispatcher may choose either one of these drivers to be
scheduled first. The Timer Driver, Metronome Driver, and Reset Driver all depend on the protocols
produced by the CPU Driver. Once the CPU Driver has been loaded and executed, the Timer
Driver, Metronome Driver, and Reset Driver may be scheduled in any order. The table below shows
all 30 possible orderings from the sample firmware volume in the figure above. Each ordering is
listed from left to right across the table. A reasonable implementation of a DXE Dispatcher would
consistently produce the same ordering for a given system configuration. If the configuration of the
system is changed in any way (including a order of files stored in a firmware volume), then a

Platform Initialization Specification VOLUME 2 DXE Core Interface

120 3/15/2016 Version 1.4 Errata A

different dispatch ordering may be generated, but this new ordering should be consistent until the
next system configuration change.

Table 32. DXE Dispatcher Orderings

Dispatch Order

1 2 3 4 5 6 7 8

1 Security Runtime Variable BDS CPU Timer Metronome Reset

2 Security Runtime Variable BDS CPU Timer Reset Metronome

3 Security Runtime Variable BDS CPU Metronome Timer Reset

4 Security Runtime Variable BDS CPU Metronome Reset Timer

5 Security Runtime Variable BDS CPU Reset Timer Metronome

6 Security Runtime Variable BDS CPU Reset Metronome Timer

7 Security Runtime Variable CPU BDS Timer Metronome Reset

8 Security Runtime Variable CPU BDS Timer Reset Metronome

9 Security Runtime Variable CPU BDS Metronome Timer Reset

10 Security Runtime Variable CPU BDS Metronome Reset Timer

11 Security Runtime Variable CPU BDS Reset Timer Metronome

12 Security Runtime Variable CPU BDS Reset Metronome Timer

13 Security Runtime Variable CPU Timer BDS Metronome Reset

14 Security Runtime Variable CPU Timer BDS Reset Metronome

15 Security Runtime Variable CPU Timer Metronome BDS Reset

16 Security Runtime Variable CPU Timer Metronome Reset BDS

17 Security Runtime Variable CPU Timer Reset BDS Metronome

18 Security Runtime Variable CPU Timer Reset Metronome BDS

19 Security Runtime Variable CPU Metronome Timer BDS Reset

20 Security Runtime Variable CPU Metronome Timer Reset BDS

21 Security Runtime Variable CPU Metronome BDS Timer Reset

22 Security Runtime Variable CPU Metronome BDS Reset Timer

23 Security Runtime Variable CPU Metronome Reset Timer BDS

24 Security Runtime Variable CPU Metronome Reset BDS Timer

25 Security Runtime Variable CPU Reset Timer Metronome BDS

26 Security Runtime Variable CPU Reset Timer BDS Metronome

27 Security Runtime Variable CPU Reset Metronome Timer BDS

28 Security Runtime Variable CPU Reset Metronome BDS Timer

29 Security Runtime Variable CPU Reset BDS Timer Metronome

30 Security Runtime Variable CPU Reset BDS Metronome Timer

DXE Dispatcher

Version 1.4 Errata A 3/15/2016 121

10.13 Security Considerations
The DXE Dispatcher is required to use the services of the Security Architectural Protocol every time
a firmware volume is discovered and before each DXE driver is executed. Because the Security
Architectural Protocol is produced by a DXE driver, there will be at least one firmware volume
discovered, and one or more DXE drivers loaded and executed before the Security Architectural
Protocol is installed. The DXE Dispatcher should not attempt to use the services of the Security
Architectural Protocol until the Security Architectural Protocol is installed. If a platform requires
the Security Architectural Protocol to be present very early in the DXE phase, then the a priori file
may be used to specify the name of the DXE driver that produces the Security Architectural
Protocol.

The Security Architectural Protocol provides a service to evaluate the authentication status of a file.
This service can also be used to evaluate the authenticate status of a firmware volume. If the
authentication status is good, then no action is taken. If there is a problem with the firmware
volume’s authentication status, then the Security Architectural Protocol may perform a platform
specific action. One option is to force the DXE Dispatcher to ignore the firmware volume so no
DXE drivers will be loaded and executed from it. Another is to log the fact that the DXE Dispatcher
is going to start dispatching DXE driver from a firmware volume with a questionable authentication
status.

The Security Architectural Protocol can also be used to evaluate the authentication status of each
DXE driver discovered in a firmware volume. If the authentication status is good, then no action is
taken. If there is a problem with the DXE driver’s authentication status, then the Security
Architectural Protocol may take a platform-specific action. One possibility is to force the DXE
driver into the “Untrusted” state, so it will not be considered for dispatch until the Boot Service
Trust() is called for that DXE driver. Another possibility is to have the DXE Dispatcher place
the DXE driver in the “Never Trusted” state, so it will never be loaded or executed. Another option
is to log the fact that a DXE driver with a questionable authentication status is about to be loaded and
executed.

Platform Initialization Specification VOLUME 2 DXE Core Interface

122 3/15/2016 Version 1.4 Errata A

Version 1.4 Errata A 3/15/2016 123

11
DXE Drivers

11.1 Introduction
The DXE architecture provides a rich set of extensible services that provides for a wide variety of
different system firmware designs. The DXE Foundation provides the generic services required to
locate and execute DXE drivers. The DXE drivers are the components that actually initialize the
platform and provide the services required to boot an UEFI-compliant operating system or a set of
UEFI-compliant system utilities. There are many possible firmware implementations for any given
platform. Because the DXE Foundation has fixed functionality, all the added value and flexibility in
a firmware design is embodied in the implementation and organization of DXE drivers.

There are two basic classes of DXE drivers:

• Early DXE Drivers

• DXE Drivers that follow the UEFI Driver Model

Additional classifications of DXE drivers are also possible.

All DXE drivers may consume the UEFI Boot Services, UEFI Runtime Services, and DXE Services
to perform their functions. DXE drivers must use dependency expressions to guarantee that the
services and protocol interfaces they require are available before they are executed. See the
following topics for the DXE Architectural Protocols upon which the services depend:

• UEFI Boot Services Dependencies

• UEFI Runtime Services Dependencies

• DXE Services Dependencies

11.2 Classes of DXE Drivers

11.2.1 Early DXE Drivers
The first class of DXE drivers are those that execute very early in the DXE phase. The execution
order of these DXE drivers depends on the following:

• The presence and contents of an a priori file

• The evaluation of dependency expressions

These early DXE drivers will typically contain basic services, processor initialization code, chipset
initialization code, and platform initialization code. These early drivers will also typically produce
the DXE Architectural Protocols that are required for the DXE Foundation to produces its full
complement of UEFI Boot Services and UEFI Runtime Services. To support the fastest possible
boot time, as much initialization should be deferred to the DXE drivers that follow UEFI Driver
Model described in the UEFI 2.0 specification.

Platform Initialization Specification VOLUME 2 DXE Core Interface

124 3/15/2016 Version 1.4 Errata A

The early DXE drivers need to be aware that not all of the UEFI Boot Services, UEFI Runtime
Services, and DXE Services may be available when they execute because not all of the DXE
Architectural Protocols may be been registered yet.

11.2.2 DXE Drivers that Follow the UEFI Driver Model
The second class of DXE drivers are those that follow the UEFI Driver Model in the UEFI 2.0
specification. These drivers do not touch any hardware resources when they initialize. Instead, they
register a Driver Binding Protocol interface in the handle database. The set of Driver Binding
Protocols are used by the Boot Device Selection (BDS) phase to connect the drivers to the devices
that are required to establish consoles and provide access to boot devices. The DXE drivers that
follow the UEFI Driver Model ultimately provide software abstractions for console devices and boot
devices, but only when they are explicitly asked to do so.

The DXE drivers that follow the UEFI Driver Model do not need to be concerned with dependency
expressions. These drivers simply register the Driver Binding Protocol in the handle database when
they are executed, and this operation can be performed without the use of any DXE Architectural
Protocols. DXE drivers with empty dependency expressions will not be dispatched by the DXE
Dispatcher until all of the DXE Architectural Protocols have been installed.

11.2.3 Additional Classifications
DXE drivers can also be classified as the following:

• Boot service drivers

• Runtime drivers

Boot service drivers provide services that are available until the ExitBootServices()
function is called. When ExitBootServices() is called, all the memory used by boot service
drivers is released for use by an operating system.

Runtime drivers provide services that are available before and after ExitBootServices() is
called, including the time that an operating system is running. All of the services in the UEFI
Runtime Services Table are produced by runtime drivers.

The DXE Foundation is considered a boot service component, so the DXE Foundation is also
released when ExitBootServices() is called. As a result, runtime drivers may not use any of
the UEFI Boot Services, DXE Services, or services produced by boot service drivers after
ExitBootServices() is called.

Version 1.4 Errata A 3/15/2016 125

12
DXE Architectural Protocols

12.1 Introduction
The DXE Foundation is abstracted from the platform hardware through a set of architectural
protocols. These protocols function just like other protocols in every way. The only difference is
that these architectural protocols are the protocols that the DXE Foundation itself consumes to
produce the UEFI Boot Services, UEFI Runtime Services, and DXE Services. DXE drivers that are
loaded from firmware volumes produce the DXE Architectural Protocols. This means that the DXE
Foundation must have enough services to load and start DXE drivers before even a single DXE
driver is executed.

The DXE Foundation is passed a HOB list that must contain a description of some amount of system
memory and at least one firmware volume. The system memory descriptors in the HOB list are used
to initialize the UEFI services that require only memory to function correctly. The system is also
guaranteed to be running on only one processor in flat physical mode with interrupts disabled. The
firmware volume is passed to the DXE Dispatcher, and the DXE Dispatcher must contain a read-
only firmware file system driver to search for the a priori file and any DXE drivers in the firmware
volumes. When a driver is discovered that needs to be loaded and executed, the DXE Dispatcher will
use a PE/COFF loader to load and invoke the DXE driver. The early DXE drivers will produce the
DXE Architectural Protocols, so the DXE Foundation can produce the full complement of UEFI
Boot Services and UEFI Runtime Services.

Figure 9 shows the HOB list being passed to the DXE Foundation.

Platform Initialization Specification VOLUME 2 DXE Core Interface

126 3/15/2016 Version 1.4 Errata A

Figure 9. DXE Architectural Protocols

The DXE Foundation consumes the services of the DXE Architectural Protocols and produces the
following:

• UEFI System Table

• UEFI Boot Services Table

• UEFI Runtime Services Table

• DXE Services Table

The UEFI Boot Services Table and DXE Services Table are allocated from UEFI boot services
memory, which means that the UEFI Boot Services Table and DXE Services Table are freed when
the OS runtime phase is entered. The UEFI System Table and UEFI Runtime Services Table are
allocated from UEFI runtime services memory, and they persist into the OS runtime phase.

When executing upon an UEFI-compliant system, UEFI drivers, applications, and UEFI-aware
operating systems can discern if the platform is built upon the Foundation by searching for the DXE
Services Table GUID in the UEFI System configuration table.

The DXE Architectural Protocols shown on the left of the figure are used to produce the UEFI Boot
Services and DXE Services. The DXE Foundation and these protocols will be freed when the
system transitions to the OS runtime phase. The DXE Architectural Protocols shown on the right are
used to produce the UEFI Runtime Services. These services will persist in the OS runtime phase.
The Runtime Architectural Protocol in the middle is unique. This protocol provides the services that

System
Memory

I/O
Resources

MMIO
Resources

Firmware
Devices

Firmware
Volumes DXE

Drivers

DXE
Drivers

PHIT
HOB

HOB HOB HOB HOB

UEFI Boot Services Table DXE Services UEFI System Table UEFI Runtime Services

DXE Foundation / DXE Dispatcher

Hardware

Security
Architectural

Protocol

Metronome
Architectural

Protocol

BDS
Architectural

Protocol

Monotonic
Counter

Architectural
Protocol

Runtime
Architectural

Protocol

Status
Code

Architectural
Protocol

Reset
Architectural

Protocol

Variable
Write

Architectural
Protocol

Variable
Architectural

Protocol

Watchdog
Timer

Architectural
Protocol

Timer
Architectural

Protocol

CPU
Architectural

Protocol

Real Time
Clock

Architectural
Protocol

HOB List

HOB. . .

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 127

are required to transition the runtime services from physical mode to virtual mode under the
direction of an OS. Once this transition is complete, the services of the Runtime Architectural
Protocol can no longer be used. The following topics describe all of the DXE Architectural
Protocols in detail.

12.2 Boot Device Selection (BDS) Architectural Protocol

EFI_BDS_ARCH_PROTOCOL

Summary
Transfers control from the DXE phase to an operating system or system utility. This protocol must
be produced by a boot service or runtime DXE driver and may only be consumed by the DXE
Foundation.

GUID
#define EFI_BDS_ARCH_PROTOCOL_GUID \
 {0x665E3FF6,0x46CC,0x11d4,
 0x9A,0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D}

Protocol Interface Structure
typedef struct {
 EFI_BDS_ENTRY Entry;
} EFI_BDS_ARCH_PROTOCOL;

Parameters
Entry

The entry point to BDS. See the Entry() function description. This call does not
take any parameters, and the return value can be ignored. If it returns, then the
dispatcher must be invoked again, if it never returns, then an operating system or a
system utility have been invoked.

Description
The EFI_BDS_ARCH_PROTOCOL transfers control from DXE to an operating system or a system
utility. If there are not enough drivers initialized when this protocol is used to access the required
boot device(s), then this protocol should add drivers to the dispatch queue and return control back to
the dispatcher. Once the required boot devices are available, then the boot device can be used to
load and invoke an OS or a system utility.

Platform Initialization Specification VOLUME 2 DXE Core Interface

128 3/15/2016 Version 1.4 Errata A

EFI_BDS_ARCH_PROTOCOL.Entry()

Summary
Performs Boot Device Selection (BDS) and transfers control from the DXE Foundation to the
selected boot device. The implementation of the boot policy must follow the rules outlined in the
Boot Manager chapter of the UEFI 2.0 specification. This boot policy allows for flexibility, so the
platform vendor will typically customize the implementation of this service.

Prototype
typedef
VOID
(EFIAPI *EFI_BDS_ENTRY) (
 IN CONST EFI_BDS_ARCH_PROTOCOL *This
);

Parameters
This

The EFI_BDS_ARCH_PROTOCOL instance.

Description
This function uses policy data from the platform to determine what operating system or system
utility should be loaded and invoked. This function call also optionally uses the user's input to
determine the operating system or system utility to be loaded and invoked. When the DXE
Foundation has dispatched all the drivers on the dispatch queue, this function is called. This
function will attempt to connect the boot devices required to load and invoke the selected operating
system or system utility. During this process, additional firmware volumes may be discovered that
may contain addition DXE drivers that can be dispatched by the DXE Foundation. If a boot device
cannot be fully connected, this function calls the DXE Service Dispatch() to allow the DXE
drivers from any newly discovered firmware volumes to be dispatched. Then the boot device
connection can be attempted again. If the same boot device connection operation fails twice in a
row, then that boot device has failed, and should be skipped. This function should never return.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 129

12.3 CPU Architectural Protocol

EFI_CPU_ARCH_PROTOCOL

Summary
Abstracts the processor services that are required to implement some of the DXE services. This
protocol must be produced by a boot service or runtime DXE driver and may only be consumed by
the DXE Foundation and DXE drivers that produce architectural protocols.

GUID
#define EFI_CPU_ARCH_PROTOCOL_GUID \
 {0x26baccb1,0x6f42,0x11d4,0xbc,\
 0xe7,0x0,0x80,0xc7,0x3c,0x88,0x81}

Protocol Interface Structure
typedef struct _EFI_CPU_ARCH_PROTOCOL {
 EFI_CPU_FLUSH_DATA_CACHE FlushDataCache;
 EFI_CPU_ENABLE_INTERRUPT EnableInterrupt;
 EFI_CPU_DISABLE_INTERRUPT DisableInterrupt;
 EFI_CPU_GET_INTERRUPT_STATE GetInterruptState;
 EFI_CPU_INIT Init;
 EFI_CPU_REGISTER_INTERRUPT_HANDLER RegisterInterruptHandler;
 EFI_CPU_GET_TIMER_VALUE GetTimerValue;
 EFI_CPU_SET_ATTRIBUTES SetMemoryAttributes;
 UINT32 NumberOfTimers;
 UINT32 DmaBufferAlignment;
} EFI_CPU_ARCH_PROTOCOL;

Parameters
FlushDataCache

Flushes a range of the processor’s data cache. See the FlushDataCache()
function description. If the processor does not contain a data cache, or the data cache
is fully coherent, then this function can just return EFI_SUCCESS. If the processor
does not support flushing a range of addresses from the data cache, then the entire data
cache must be flushed. This function is used by the root bridge I/O abstractions to
flush data caches for DMA operations.

EnableInterrupt

Enables interrupt processing by the processor. See the EnableInterrupt()
function description. This function is used by the Boot Service RaiseTPL() and
RestoreTPL().

DisableInterrupt

Disables interrupt processing by the processor. See the DisableInterrupt()
function description. This function is used by the Boot Service RaiseTPL() and
RestoreTPL().

Platform Initialization Specification VOLUME 2 DXE Core Interface

130 3/15/2016 Version 1.4 Errata A

GetInterruptState

Retrieves the processor’s current interrupt state. See the GetInterruptState()
function description.

Init

Generates an INIT on the processor. See the Init() function description. This
function may be used by the EFI_RESET Protocol depending upon a specified boot
path. If a processor cannot programmatically generate an INIT without help from
external hardware, then this function returns EFI_UNSUPPORTED.

RegisterInterruptHandler

Associates an interrupt service routine with one of the processor’s interrupt vectors.
See the RegisterInterruptHandler() function description. This function is
typically used by the EFI_TIMER_ARCH_PROTOCOL to hook the timer interrupt
in a system. It can also be used by the debugger to hook exception vectors.

GetTimerValue

Returns the value of one of the processor’s internal timers. See the
GetTimerValue() function description.

SetMemoryAttributes

Change a memory region to support specified memory attributes. See the
SetMemoryAttributes() function description.

NumberOfTimers

The number of timers that are available in a processor. The value in this field is a
constant that must not be modified after the CPU Architectural Protocol is installed.
All consumers must treat this as a read-only field.

DmaBufferAlignment

The size, in bytes, of the alignment required for DMA buffer allocations. This is
typically the size of the largest data cache line in the platform. This value can be
determined by looking at the data cache line sizes of all the caches present in the
platform, and returning the largest. This is used by the root bridge I/O abstraction
protocols to guarantee that no two DMA buffers ever share the same cache line. The
value in this field is a constant that must not be modified after the CPU Architectural
Protocol is installed. All consumers must treat this as a read-only field.

Description
The EFI_CPU_ARCH_PROTOCOL is used to abstract processor-specific functions from the DXE
Foundation. This includes flushing caches, enabling and disabling interrupts, hooking interrupt
vectors and exception vectors, reading internal processor timers, resetting the processor, and
determining the processor frequency.

The GCD memory space map is initialized by the DXE Foundation based on the contents of the
HOB list. The HOB list contains the capabilities of the different memory regions, but it does not
contain their current attributes. The DXE driver that produces the EFI_CPU_ARCH_PROTOCOL is
responsible for maintaining the current attributes of the memory regions visible to the processor.
This means that the DXE driver that produces the EFI_CPU_ARCH_PROTOCOL must seed the

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 131

GCD memory space map with the initial state of the attributes for all the memory regions visible to
the processor. The DXE Service SetMemorySpaceAttributes() allows the attributes of a
memory range to be modified. The SetMemorySpaceAttributes() DXE Service is
implemented using the SetMemoryAttributes() service of the
EFI_CPU_ARCH_PROTOCOL.

To initialize the state of the attributes in the GCD memory space map, the DXE driver that produces
the EFI_CPU_ARCH_PROTOCOL must call the DXE Service
SetMemorySpaceAttributes() for all the different memory regions visible to the processor
passing in the current attributes. If the CPU does not support certain memory region attributes in the
UEFI Specification, then these should always be reported as disabled or not present. If the CPU
supports additional memory region attributes, then the reported attributes should be those which
most closely match but not exceed those described in the specification. This, in turn, will call back to
the SetMemoryAttributes() service of the EFI_CPU_ARCH_PROTOCOL, and all of these
calls must return EFI_SUCCESS, since the DXE Foundation is only requesting that the attributes of
the memory region be set to their current settings. This will force the current attributes in the GCD
memory space map to be set to these current settings. After this initialization is complete, the next
call to the DXE Service GetMemorySpaceMap() will correctly show the current attributes of all
the memory regions. In addition, any future calls to the DXE Service
SetMemorySpaceAttributes() will in turn call the EFI_CPU_ARCH_PROTOCOL to see if
those attributes can be modified, and if they can, the GCD memory space map will be updated
accordingly.

Platform Initialization Specification VOLUME 2 DXE Core Interface

132 3/15/2016 Version 1.4 Errata A

EFI_CPU_ARCH_PROTOCOL.FlushDataCache()

Summary
Flushes a range of the processor’s data cache. If the processor does not contain a data cache, or the
data cache is fully coherent, then this function can just return EFI_SUCCESS. If the processor does
not support flushing a range of addresses from the data cache, then the entire data cache must be
flushed. This function is used by the root bridge I/O abstractions to flush caches for DMA
operations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_FLUSH_DATA_CACHE) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This,
 IN EFI_PHYSICAL_ADDRESS Start,
 IN UINT64 Length,
 IN EFI_CPU_FLUSH_TYPE FlushType
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

Start

The beginning physical address to flush from the processor’s data cache.

Length

The number of bytes to flush from the processor’s data cache. This function may
flush more bytes than Length specifies depending upon the granularity of the flush
operation that the processor supports.

FlushType

Specifies the type of flush operation to perform. Type EFI_CPU_FLUSH_TYPE is
defined in “Related Definitions” below.

Description
This function flushes the range of addresses from Start to Start+Length from the processor's
data cache. If Start is not aligned to a cache line boundary, then the bytes before Start to the
preceding cache line boundary are also flushed. If Start+Length is not aligned to a cache line
boundary, then the bytes past Start+Length to the end of the next cache line boundary are also
flushed. If the address range is flushed, then EFI_SUCCESS is returned. If the address range
cannot be flushed, then EFI_DEVICE_ERROR is returned. If the processor does not support the
flush type specified by FlushType, then EFI_UNSUPPORTED is returned. The FlushType of
EfiCpuFlushTypeWriteBackInvalidate must be supported. If the data cache is fully
coherent with all DMA operations, then this function can just return EFI_SUCCESS. If the
processor does not support flushing a range of the data cache, then the entire data cache can be
flushed.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 133

Related Definitions
typedef enum {
 EfiCpuFlushTypeWriteBackInvalidate,
 EfiCpuFlushTypeWriteBack,
 EfiCpuFlushTypeInvalidate,
 EfiCpuMaxFlushType
} EFI_CPU_FLUSH_TYPE;

Status Codes Returned

EFI_SUCCESS The address range from Start to Start+Length was

flushed from the processor’s data cache.

EFI_UNSUPPORTED The processor does not support the cache flush type specified by

FlushType.

EFI_DEVICE_ERROR The address range from Start to Start+Length could not

be flushed from the processor's data cache.

Platform Initialization Specification VOLUME 2 DXE Core Interface

134 3/15/2016 Version 1.4 Errata A

EFI_CPU_ARCH_PROTOCOL.EnableInterrupt()

Summary
Enables interrupt processing by the processor. This function is used to implement the Boot Services
RaiseTPL() and RestoreTPL().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_ENABLE_INTERRUPT) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

Description
This function enables interrupt processing by the processor. If interrupts are enabled, then
EFI_SUCCESS is returned. Otherwise, EFI_DEVICE_ERROR is returned.

Status Codes Returned

EFI_SUCCESS Interrupts are enabled on the processor.

EFI_DEVICE_ERROR Interrupts could not be enabled on the processor.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 135

EFI_CPU_ARCH_PROTOCOL.DisableInterrupt()

Summary
Disables interrupt processing by the processor. This function is used to implement the Boot Services
RaiseTPL() and RestoreTPL().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_DISABLE_INTERRUPT) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

Description
This function disables interrupt processing by the processor. If interrupts are disabled, then
EFI_SUCCESS is returned. Otherwise, EFI_DEVICE_ERROR is returned.

Status Codes Returned

EFI_SUCCESS Interrupts are disabled on the processor.

EFI_DEVICE_ERROR Interrupts could not be disabled on the processor.

Platform Initialization Specification VOLUME 2 DXE Core Interface

136 3/15/2016 Version 1.4 Errata A

EFI_CPU_ARCH_PROTOCOL.GetInterruptState()

Summary
Retrieves the processor’s current interrupt state.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_GET_INTERRUPT_STATE) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This,
 OUT BOOLEAN *State
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

State

A pointer to the processor’s current interrupt state. Set to TRUE if interrupts are
enabled and FALSE if interrupts are disabled.

Description
This function retrieves the processor’s current interrupt state a returns it in State. If interrupts are
currently enabled, then TRUE is returned. If interrupts are currently disabled, then FALSE is
returned. If State is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise,
EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The processor’s current interrupt state was returned in State.

EFI_INVALID_PARAMETER State is NULL.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 137

EFI_CPU_ARCH_PROTOCOL.Init()

Summary
Generates an INIT on the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_INIT) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This,
 IN EFI_CPU_INIT_TYPE InitType
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

InitType

The type of processor INIT to perform. Type EFI_CPU_INIT_TYPE is defined in
“Related Definitions” below.

Description
This function generates an INIT on the processor. If this function succeeds, then the processor will
be reset, and control will not be returned to the caller. If InitType is not supported by this
processor, or the processor cannot programmatically generate an INIT without help from external
hardware, then EFI_UNSUPPORTED is returned. If an error occurs attempting to generate an INIT,
then EFI_DEVICE_ERROR is returned.

Related Definitions
typedef enum {
 EfiCpuInit,
 EfiCpuMaxInitType
} EFI_CPU_INIT_TYPE;

Status Codes Returned

EFI_SUCCESS The processor INIT was performed. This return code should never be
seen.

EFI_UNSUPPORTED The processor INIT operation specified by InitType is not

supported by this processor.

EFI_DEVICE_ERROR The processor INIT failed.

Platform Initialization Specification VOLUME 2 DXE Core Interface

138 3/15/2016 Version 1.4 Errata A

EFI_CPU_ARCH_PROTOCOL.RegisterInterruptHandler()

Summary
Registers a function to be called from the processor interrupt handler.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_REGISTER_INTERRUPT_HANDLER) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This,
 IN EFI_EXCEPTION_TYPE InterruptType,
 IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

InterruptType

Defines which interrupt or exception to hook. Type EFI_EXCEPTION_TYPE and
the valid values for this parameter are defined in
EFI_DEBUG_SUPPORT_PROTOCOL of the UEFI 2.0 specification.

InterruptHandler

A pointer to a function of type EFI_CPU_INTERRUPT_HANDLER that is called
when a processor interrupt occurs. If this parameter is NULL, then the handler will be
uninstalled. Type EFI_CPU_INTERRUPT_HANDLER is defined in “Related
Definitions” below.

Description
The RegisterInterruptHandler() function registers and enables the handler specified by
InterruptHandler for a processor interrupt or exception type specified by
InterruptType. If InterruptHandler is NULL, then the handler for the processor interrupt
or exception type specified by InterruptType is uninstalled. The installed handler is called
once for each processor interrupt or exception.

If the interrupt handler is successfully installed or uninstalled, then EFI_SUCCESS is returned.

If InterruptHandler is not NULL, and a handler for InterruptType has already been
installed, then EFI_ALREADY_STARTED is returned.

If InterruptHandler is NULL, and a handler for InterruptType has not been installed,
then EFI_INVALID_PARAMETER is returned.

If InterruptType is not supported, then EFI_UNSUPPORTED is returned.

The EFI_CPU_ARCH_PROTOCOL implementation of this function must handle saving and
restoring system context to the system context record around calls to the interrupt handler. It must
also perform the necessary steps to return to the context that was interrupted by the interrupt. No
chaining of interrupt handlers is allowed.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 139

Related Definitions
typedef
VOID
(*EFI_CPU_INTERRUPT_HANDLER) (
 IN EFI_EXCEPTION_TYPE InterruptType,
 IN EFI_SYSTEM_CONTEXT SystemContext
);

InterruptType

Defines the type of interrupt or exception that occurred on the processor. This
parameter is processor architecture specific. The type EFI_EXCEPTION_TYPE
and the valid values for this parameter are defined in
EFI_DEBUG_SUPPORT_PROTOCOL of the UEFI 2.0 specification.

SystemContext

A pointer to the processor context when the interrupt occurred on the processor. Type
EFI_SYSTEM_CONTEXT is defined in the EFI_DEBUG_SUPPORT_PROTOCOL of
the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The handler for the processor interrupt was successfully installed or
uninstalled.

EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler for

InterruptType was previously installed.

EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for

InterruptType was not previously installed.

EFI_UNSUPPORTED The interrupt specified by InterruptType is not supported.

Platform Initialization Specification VOLUME 2 DXE Core Interface

140 3/15/2016 Version 1.4 Errata A

EFI_CPU_ARCH_PROTOCOL.GetTimerValue()

Summary
Returns a timer value from one of the processor's internal timers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_GET_TIMER_VALUE) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This,
 IN UINT32 TimerIndex,
 OUT UINT64 *TimerValue,
 OUT UINT64 *TimerPeriod OPTIONAL
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

TimerIndex

Specifies which processor timer is to be returned in TimerValue. This parameter
must be between 0 and NumberOfTimers-1.

TimerValue

Pointer to the returned timer value.

TimerPeriod

A pointer to the amount of time that passes in femtoseconds (10-15) for each increment
of TimerValue. If TimerValue does not increment at a predictable rate, then 0 is
returned. The amount of time that has passed between two calls to
GetTimerValue() can be calculated with the formula (TimerValue2 –
TimerValue1) * TimerPeriod. This parameter is optional and may be NULL.

Description
This function reads the processor timer specified by TimerIndex and returns it in TimerValue.
If TimerValue is NULL, then EFI_INVALID_PARAMETER is returned. If TimerPeriod is

not NULL, then the amount of time that passes in femtoseconds (10-15) for each increment if
TimerValue is returned in TimerPeriod. If the timer does not run at a predictable rate, then a
TimerPeriod of 0 is returned. If TimerIndex does not specify a valid timer in this processor,
then EFI_INVALID_PARAMETER is returned. The valid range for TimerIndex is
0..NumberOfTimers-1. If the processor does not contain any readable timers, then this function
returns EFI_UNSUPPORTED. If an error occurs attempting to read one of the processor's timers,
then EFI_DEVICE_ERROR is returned.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 141

Status Codes Returned

EFI_SUCCESS The processor timer value specified by TimerIndex was returned

in TimerValue.

EFI_INVALID_PARAMETER TimerValue is NULL.

EFI_INVALID_PARAMETER TimerIndex is not valid.

EFI_UNSUPPORTED The processor does not have any readable timers.

EFI_DEVICE_ERROR An error occurred attempting to read one of the processor's timers.

Platform Initialization Specification VOLUME 2 DXE Core Interface

142 3/15/2016 Version 1.4 Errata A

EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes()

Summary
Change a memory region to support specified memory attributes.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_SET_MEMORY_ATTRIBUTES) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This,
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length,
 IN UINT64 Attributes
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

BaseAddress

The physical address that is the start address of a memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size in bytes of the memory region.

Attributes

A bit mask that specifies the memory region attributes. See the UEFI Boot Service
GetMemoryMap() for the set of legal attribute bits.

Description
This function changes the attributes for the memory region specified by BaseAddress and
Length to support those specified by Attributes. If the memory region attributes are
changed so that they do not conflict with those specified by Attributes, then
EFI_SUCCESS is returned.

This function modifies the attributes for the memory region specified by BaseAddress and
Length from their current attributes to the attributes specified by Attributes. If this
modification of attributes succeeds, then EFI_SUCCESS is returned.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If the attributes specified by Attributes are not supported for the memory region specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 143

If the attributes for one or more bytes of the memory range specified by BaseAddress and
Length cannot be modified because the current system policy does not allow them to be modified,
then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to modify the attributes of the memory range, then
EFI_OUT_OF_RESOURCES is returned.

If Attributes specifies a combination of memory attributes that cannot be set together,
then EFI_INVALID_PARAMETER is returned. For example, if both EFI_MEMORY_UC and
EFI_MEMORY_WT are set.

Status Codes Returned

EFI_SUCCESS The attributes were set for the memory region.

EFI_INVALID_PARAMETER Length is zero.

EFI_INVALID_PARAMETER Attributes specified an illegal combination of attributes that

cannot be set together.

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory

resource range specified by BaseAddress and Length.

EFI_UNSUPPORTED The bit mask of attributes is not support for the memory resource

range specified by BaseAddress and Length.

EFI_ACCESS_DENIED The attributes for the memory resource range specified by

BaseAddress and Length cannot be modified.

EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
the memory resource range.

Platform Initialization Specification VOLUME 2 DXE Core Interface

144 3/15/2016 Version 1.4 Errata A

12.4 Metronome Architectural Protocol

EFI_METRONOME_ARCH_PROTOCOL

Summary
Used to wait for ticks from a known time source in a platform. This protocol may be used to
implement a simple version of the Stall() Boot Service. This protocol must be produced by a
boot service or runtime DXE driver and may only be consumed by the DXE Foundation and DXE
drivers that produce DXE Architectural Protocols.

GUID
#define EFI_METRONOME_ARCH_PROTOCOL_GUID \
 {0x26baccb2,0x6f42,0x11d4,0xbc,\
 0xe7,0x0,0x80,0xc7,0x3c,0x88,0x81}

Protocol Interface Structure
typedef struct _EFI_METRONOME_ARCH_PROTOCOL {
 EFI_METRONOME_WAIT_FOR_TICK WaitForTick;
 UINT32 TickPeriod;
} EFI_METRONOME_ARCH_PROTOCOL;

Parameters
WaitForTick

Waits for a specified number of ticks from a known time source in the platform. See
the WaitForTick() function description. The actual time passed between entry of
this function and the first tick is between 0 and TickPeriod 100 ns units. To
guarantee that at least TickPeriod time has elapsed, wait for two ticks.

TickPeriod

The period of platform's known time source in 100 ns units. This value on any
platform must not exceed 200 µs. The value in this field is a constant that must not be
modified after the Metronome architectural protocol is installed. All consumers must
treat this as a read-only field.

Description
This protocol provides access to a known time source in the platform to the DXE Foundation. The
DXE Foundation uses this known time source to produce DXE Foundation services that require
calibrated delays.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 145

EFI_METRONOME_ARCH_PROTOCOL.WaitForTick()

Summary
Waits for a specified number of ticks from a known time source in a platform.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_METRONOME_WAIT_FOR_TICK) (
 IN CONST EFI_METRONOME_ARCH_PROTOCOL *This,
 IN UINT32 TickNumber
);

Parameters
This

The EFI_METRONOME_ARCH_PROTOCOL instance.

TickNumber

Number of ticks to wait.

Description
The WaitForTick() function waits for the number of ticks specified by TickNumber from a
known time source in the platform. If TickNumber of ticks are detected, then EFI_SUCCESS is
returned. The actual time passed between entry of this function and the first tick is between 0 and
TickPeriod 100 ns units. If you want to guarantee that at least TickPeriod time has elapsed,
wait for two ticks. This function waits for a hardware event to determine when a tick occurs. It is
possible for interrupt processing, or exception processing to interrupt the execution of the
WaitForTick() function. Depending on the hardware source for the ticks, it is possible for a tick
to be missed. This function cannot guarantee that ticks will not be missed. If a timeout occurs
waiting for the specified number of ticks, then EFI_TIMEOUT is returned.

Status Codes Returned

EFI_SUCCESS The wait for the number of ticks specified by TickNumber

succeeded.

EFI_TIMEOUT A timeout occurred waiting for the specified number of ticks.

Platform Initialization Specification VOLUME 2 DXE Core Interface

146 3/15/2016 Version 1.4 Errata A

12.5 Monotonic Counter Architectural Protocol

EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL

Summary
Provides the services required to access the system’s monotonic counter. This protocol must be
produced by a runtime DXE driver and may only be consumed by the DXE Foundation and DXE
drivers that produce DXE Architectural Protocols.

GUID
#define EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL_GUID \
 {0x1da97072,0xbddc,0x4b30,0x99,\
 0xf1,0x72,0xa0,0xb5,0x6f,0xff,0x2a}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the GetNextHighMonotonicCount() field of the UEFI Runtime Services Table
and the GetNextMonotonicCount() field of the UEFI Boot Services Table. See Services -
Runtime Services and Services - Boot Services for details on these services. After the field of the
UEFI Runtime Services Table and the field of the UEFI Boot Services Table have been initialized,
the driver must install the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL_GUID on a new
handle with a NULL interface pointer. The installation of this protocol informs the DXE Foundation
that the monotonic counter services are now available and that the DXE Foundation must update the
32-bit CRC of the UEFI Runtime Services Table and the 32-bit CRC of the UEFI Boot Services
Table.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 147

12.6 Real Time Clock Architectural Protocol

EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL

Summary
Provides the services required to access a system’s real time clock hardware. This protocol must be
produced by a runtime DXE driver and may only be consumed by the DXE Foundation.

GUID
#define EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL_GUID \
 {0x27CFAC87,0x46CC,0x11d4,0x9A,\
 0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the GetTime(), SetTime(), GetWakeupTime(), and SetWakeupTime()
fields of the UEFI Runtime Services Table. See “Runtime Capabilities” on page 35 for details on
these services. After the four fields of the UEFI Runtime Services Table have been initialized, the
driver must install the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL_GUID on a new handle
with a NULL interface pointer. The installation of this protocol informs the DXE Foundation that the
real time clock–related services are now available and that the DXE Foundation must update the
32-bit CRC of the UEFI Runtime Services Table.

Platform Initialization Specification VOLUME 2 DXE Core Interface

148 3/15/2016 Version 1.4 Errata A

12.7 Reset Architectural Protocol

EFI_RESET_ARCH_PROTOCOL

Summary
Provides the service required to reset a platform. This protocol must be produced by a runtime DXE
driver and may only be consumed by the DXE Foundation.

GUID
#define EFI_RESET_ARCH_PROTOCOL_GUID \
 {0x27CFAC88,0x46CC,0x11d4,0x9A,\
 0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the ResetSystem() field of the UEFI Runtime Services Table. See “Runtime
Capabilities” on page 35 for details on this service. After this field of the UEFI Runtime Services
Table has been initialized, the driver must install the EFI_RESET_ARCH_PROTOCOL_GUID on a
new handle with a NULL interface pointer. The installation of this protocol informs the DXE
Foundation that the reset system service is now available and that the DXE Foundation must update
the 32-bit CRC of the UEFI Runtime Services Table.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 149

12.8 Runtime Architectural Protocol
The following topics provide a detailed description of the EFI_RUNTIME_ARCH_PROTOCOL.
The DXE Foundation contains no runtime code, so all runtime code is contained in DXE
Architectural Protocols. This is due to the fact that runtime code must be callable in physical or
virtual mode. The Runtime Architectural Protocol contains the UEFI runtime services that are
callable only in physical mode. The Runtime Architectural Protocol can be thought of as the runtime
portion of the DXE Foundation.

The Runtime Architectural Protocol contains support for transition of runtime drivers from physical
mode calling to virtual mode calling.

EFI_RUNTIME_ARCH_PROTOCOL

Summary
Allows the runtime functionality of the DXE Foundation to be contained in a separate driver. It also
provides hooks for the DXE Foundation to export information that is needed at runtime. As such,
this protocol allows services to the DXE Foundation to manage runtime drivers and events. This
protocol also implies that the runtime services required to transition to virtual mode,
SetVirtualAddressMap() and ConvertPointer(), have been registered into the UEFI
Runtime Table in the UEFI System Table. This protocol must be produced by a runtime DXE driver
and may only be consumed by the DXE Foundation.

GUID
#define EFI_RUNTIME_ARCH_PROTOCOL_GUID \
 {0xb7dfb4e1,0x52f,0x449f,0x87,\
 0xbe,0x98,0x18,0xfc,0x91,0xb7,0x33}

Protocol Interface Structure
typedef struct _EFI_RUNTIME_ARCH_PROTOCOL {
EFI_LIST_ENTRY ImageHead;
EFI_LIST_ENTRY EventHead;
UINTN MemoryDescriptorSize;
UINT32 MemoryDesciptorVersion;
UINTN MemoryMapSize;
EFI_MEMORY_DESCRIPTOR *MemoryMapPhysical;
EFI_MEMORY_DESCRIPTOR *MemoryMapVirtual;
BOOLEAN VirtualMode;
BOOLEAN AtRuntime;
} EFI_RUNTIME_ARCH_PROTOCOL;

Platform Initialization Specification VOLUME 2 DXE Core Interface

150 3/15/2016 Version 1.4 Errata A

Parameters
ImageHead

A list of type EFI_RUNTIME_IMAGE_ENTRY where the DXE Foundation inserts
items into the list and the Runtime AP consumes the data to implement the
SetVirtualAddressMap() call.

EventHead

A list of type EFI_RUNTIME_EVENT_ENTRY where the DXE Foundation inserts
items into the list and the Runtime AP consumes the data to implement the
SetVirtualAddressMap() call.

MemoryDescriptorSize

Size of a memory descriptor that is returned by GetMemoryMap(). This value is
updated by the DXE Foundation.

MemoryDescriptorVersion

Version of a memory descriptor that is return by GetMemoryMap(). This value is
updated by the DXE Foundation.

MemoryMapSize

Size of the memory map in bytes contained in MemoryMapPhysical and
MemoryMapVirtual. This value is updated by the DXE Foundation when memory
for MemoryMapPhysical gets allocated.

MemoryMapPhysical

Pointer to a runtime buffer that contains a copy of the memory map returned via
GetMemoryMap(). The memory must be allocated by the DXE Foundation so that
it is accounted for in the memory map.

MemoryMapVirtual

Pointer to MemoryMapPhysical that is updated to virtual mode after
SetVirtualAddressMap(). The DXE Foundation updates this value when it
updates MemoryMapPhysical with the same physical address. The Runtime AP is
responsible for converting MemoryMapVirtual to a virtual pointer.

VirtualMode

Boolean that is TRUE if SetVirtualAddressMap() has been called. This field is
set by the Runtime AP. When VirtualMode is TRUE MemoryMapVirtual
pointer contains the virtual address of the MemoryMapPhysical.

AtRuntime

Boolean that is TRUE if ExitBootServices() has been called. This field is set
by the Runtime AP.

Related Definitions
//***
// EFI_LIST_ENTRY
//***
struct _EFI_LIST_ENTRY {

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 151

 struct _EFI_LIST_ENTRY *ForwardLink;
 struct _EFI_LIST_ENTRY *BackLink;
} EFI_LIST_ENTRY;

ForwardLink

A pointer next node in the doubly linked list.

BackLink

A pointer previous node in the doubly linked list.

//***
// EFI_RUNTIME_IMAGE_ENTRY
//***
typedef struct {
 VOID *ImageBase;
 UINT64 ImageSize;
 VOID *RelocationData;
 EFI_HANDLE Handle;
 EFI_LIST_ENTRY Link;
} EFI_RUNTIME_IMAGE_ENTRY;

ImageBase

Start of image that has been loaded in memory. It is a pointer to either the DOS header
or PE header of the image. Type EFI_PHYSICAL_ADDRESS is defined in the
AllocatePages() UEFI 2.0 specification.

ImageSize

Size in bytes of the image represented by ImageBase.

RelocationData

Information about the fix-ups that were performed on ImageBase when it was
loaded into memory. This information is needed when the virtual mode fix-ups are
reapplied so that data that has been programmatically updated will not be fixed up. If
code updates a global variable the code is responsible for fixing up the variable for
virtual mode.

Handle

The ImageHandle passed into ImageBase when it was loaded. See
EFI_IMAGE_ENTRY_POINT for the definition of ImageHandle.

Link

Entry for this node in the
EFI_RUNTIME_ARCHITECTURE_PROTOCOL.ImageHead list.

Platform Initialization Specification VOLUME 2 DXE Core Interface

152 3/15/2016 Version 1.4 Errata A

//***
// EFI_RUNTIME_EVENT_ENTRY
//***
typedef struct {
 UINT32 Type;
 EFI_TPL NotifyTpl;
 EFI_EVENT_NOTIFY NotifyFunction;
 VOID *NotifyContext;
 EFI_EVENT *Event;
 EFI_LIST_ENTRY Link;
} EFI_RUNTIME_EVENT_ENTRY;

Parameters
Type

The same as Type passed into CreateEvent().

NotifyTpl

The same as NotifyTpl passed into CreateEvent(). Type EFI_TPL is
defined in RaiseTPL() in the UEFI 2.0 specification.

NotifyFunction

The same as NotifyFunction passed into CreateEvent(). Type
EFI_EVENT_NOTIFY is defined in the CreateEvent() function description.

NotifyContext

The same as NotifyContext passed into CreateEvent().

Event

The EFI_EVENT returned by CreateEvent(). Event must be in runtime memory.
Type EFI_EVENT is defined in the CreateEvent() function description.

Link

Entry for this node in the
EFI_RUNTIME_ARCHITECTURE_PROTOCOL.EventHead list.

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the SetVirtualAddressMap() and ConvertPointer() fields of the UEFI
Runtime Services Table and the CalculateCrc32() field of the UEFI Boot Services Table. See
“Runtime Capabilities” on page 35 and “Services - Boot Services” on page 29 for details on these
services. After the two fields of the UEFI Runtime Services Table and the one field of the UEFI
Boot Services Table have been initialized, the driver must install the
EFI_RUNTIME_ARCH_PROTOCOL_GUID on a new handle with an
EFI_RUNTIME_ARCH_PROTOCOL interface pointer. The installation of this protocol informs the
DXE Foundation that the virtual memory services and the 32-bit CRC services are now available,
and the DXE Foundation must update the 32-bit CRC of the UEFI Runtime Services Table and the
32-bit CRC of the UEFI Boot Services Table.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 153

All runtime DXE Foundation services are provided by the EFI_RUNTIME_ARCH_PROTOCOL.
This includes the support for registering runtime images that must be fixed up again when a
transition is made from physical mode to virtual mode. This protocol also supports all events that are
defined to fire at runtime. This protocol also contains a CRC-32 function that will be used by the
DXE Foundation as a boot service. The EFI_RUNTIME_ARCH_PROTOCOL needs the CRC-32
function when a transition is made from physical mode to virtual mode and the UEFI System Table
and UEFI Runtime Table are fixed up with virtual pointers.

Platform Initialization Specification VOLUME 2 DXE Core Interface

154 3/15/2016 Version 1.4 Errata A

12.9 Security Architectural Protocols
The EFI_SECURITY_ARCH_PROTOCOL and EFI_SECURITY2_ARCH_PROTOCOL abstract
policy actions on image invocation and other security controls from the DXE core to a security
driver.

12.9.1 Security Architectural Protocol

EFI_SECURITY_ARCH_PROTOCOL

Summary
Abstracts security-specific functions from the DXE Foundation for purposes of handling GUIDed
section encapsulations. This protocol must be produced by a boot service or runtime DXE driver
and may only be consumed by the DXE Foundation and any other DXE drivers that need to validate
the authentication of files.

See also Security2 Architectural Protocol section below.

GUID
#define EFI_SECURITY_ARCH_PROTOCOL_GUID \
 {0xA46423E3,0x4617,0x49f1,0xB9,\
 0xFF,0xD1,0xBF,0xA9,0x11,0x58,0x39}

Protocol Interface Structure
typedef struct _EFI_SECURITY_ARCH_PROTOCOL {
 EFI_SECURITY_FILE_AUTHENTICATION_STATE
 FileAuthenticationState;
} EFI_SECURITY_ARCH_PROTOCOL;

Parameters
FileAuthenticationState

This service is called upon fault with respect to the authentication of a section of a file.
See the FileAuthenticationState() function description.

Description
The EFI_SECURITY_ARCH_PROTOCOL is used to abstract platform-specific policy from the
DXE Foundation. This includes locking flash upon failure to authenticate, attestation logging, and
other exception operations.

The driver that produces the EFI_SECURITY_ARCH_PROTOCOL may also optionally install the
EFI_SECURITY_POLICY_PROTOCOL_GUID onto a new handle with a NULL interface. The
existence of this GUID in the protocol database means that the GUIDed Section Extraction Protocol
should authenticate the contents of an Authentication Section. The expectation is that the GUIDed
Section Extraction protocol will look for the existence of the
EFI_SECURITY_POLICY_PROTOCOL_GUID in the protocol database. If it exists, then the
publication thereof is taken as an injunction to attempt an authentication of any section wrapped in

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 155

an Authentication Section. See the Platform Initialization Specification, Volume 3, for details on
the GUIDed Section Extraction Protocol and Authentication Sections.

Additional GUID Definitions
#define EFI_SECURITY_POLICY_PROTOCOL_GUID \

{0x78E4D245,0xCD4D,0x4a05,0xA2,0xBA,0x47,0x43,0xE8,0x6C,0xFC,0xA
B}

Platform Initialization Specification VOLUME 2 DXE Core Interface

156 3/15/2016 Version 1.4 Errata A

EFI_SECURITY_ARCH_PROTOCOL.FileAuthenticationState()

Summary
The DXE Foundation uses this service to check the authentication status of a file. This allows the
system to execute a platform-specific policy in response the different authentication status values.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SECURITY_FILE_AUTHENTICATION_STATE) (
 IN CONST EFI_SECURITY_ARCH_PROTOCOL *This,
 IN UINT32 AuthenticationStatus,
 IN CONST EFI_DEVICE_PATH_PROTOCOL *File
);

Parameters
This

The EFI_SECURITY_ARCH_PROTOCOL instance.

AuthenticationStatus

The authentication type returned from the Section Extraction Protocol. See the
Platform Initialization Specification, Volume 3, for details on this type.

File

A pointer to the device path of the file that is being dispatched. This will optionally be
used for logging. Type EFI_DEVICE_PATH_PROTOCOL is defined Chapter 8 of
the UEFI 2.0 specification.

Description
The EFI_SECURITY_ARCH_PROTOCOL (SAP) is used to abstract platform-specific policy from
the DXE Foundation response to an attempt to use a file that returns a given status for the
authentication check from the section extraction protocol.

The possible responses in a given SAP implementation may include locking flash upon failure to
authenticate, attestation logging for all signed drivers, and other exception operations. The File
parameter allows for possible logging within the SAP of the driver.

If File is NULL, then EFI_INVALID_PARAMETER is returned.

If the file specified by File with an authentication status specified by
AuthenticationStatus is safe for the DXE Foundation to use, then EFI_SUCCESS is
returned.

If the file specified by File with an authentication status specified by
AuthenticationStatus is not safe for the DXE Foundation to use under any circumstances,
then EFI_ACCESS_DENIED is returned.

If the file specified by File with an authentication status specified by
AuthenticationStatus is not safe for the DXE Foundation to use right now, but it might be
possible to use it at a future time, then EFI_SECURITY_VIOLATION is returned.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 157

Status Codes Returned

12.9.2 Security2 Architectural Protocol

Summary
Abstracts security-specific functions from the DXE Foundation of UEFI Image Verification,
Trusted Computing Group (TCG) measured boot, and User Identity policy for image loading and
consoles. This protocol must be produced by a boot service or runtime DXE driver.

This protocol is optional and must be published prior to the EFI_SECURITY_ARCH_PROTOCOL.

As a result, the same driver must publish both of these interfaces.

When both Security and Security2 Architectural Protocols are published, LoadImage must use
them in accordance with the following rules:

• The Security2 protocol must be used on every image being loaded.

• The Security protocol must be used after the Securiy2 protocol and only on images that have
been read using Firmware Volume protocol.

When only Security architectural protocol is published, LoadImage must use it on every image
being loaded.

GUID
#define EFI_SECURITY2_ARCH_PROTOCOL_GUID \
 {0x94ab2f58, 0x1438, 0x4ef1, 0x91, \
 0x52, 0x18, 0x94, 0x1a, 0x3a, 0xe, 0x68}

Protocol Interface Structure
typedef struct _EFI_SECURITY2_ARCH_PROTOCOL {
 EFI_SECURITY2_FILE_AUTHENTICATION FileAuthentication;
} EFI_SECURITY2_ARCH_PROTOCOL;

EFI_SUCCESS The file specified by File did authenticate, and the platform policy

dictates that the DXE Foundation may use File.

EFI_INVALID_PARAMETER File is NULL.

EFI_SECURITY_VIOLATION The file specified by File did not authenticate, and the platform

policy dictates that File should be placed in the untrusted state.

A file may be promoted from the untrusted to the trusted state at a

future time with a call to the Trust() DXE Service.

EFI_ACCESS_DENIED The file specified by File did not authenticate, and the platform

policy dictates that File should not be used for any purpose.

Platform Initialization Specification VOLUME 2 DXE Core Interface

158 3/15/2016 Version 1.4 Errata A

Parameters
FileAuthentication

This service is called by DXE Foundation from the LoadImage service to verify
and/or measure the image and from the ConnectController service to probe
whether a specific device path can be connected.

Description
The EFI_SECURITY2_ARCH_PROTOCOL is used to abstract platform-specific policy from the
DXE Foundation. This includes measuring the PE/COFF image prior to invoking, comparing the
image against a policy (whether a white-list/black-list of public image verification keys or registered
hashes).

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 159

EFI_SECURITY2_ARCH_PROTOCOL.FileAuthentication()

Summary
The DXE Foundation uses this service to measure and/or verify a UEFI image.

Prototype
typedef EFI_STATUS (EFIAPI
*EFI_SECURITY_FILE_AUTHENTICATION_STATE) (
 IN CONST EFI_SECURITY2_ARCH_PROTOCOL *This,
 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
 IN VOID *FileBuffer,
 IN UINTN FileSize,
 IN BOOLEAN BootPolicy
);

Parameters
This

The EFI_SECURITY2_ARCH_PROTOCOL instance.

DevicePath

A pointer to the device path of the file that is being dispatched or the location that is
being connected. This will optionally be used for logging. Type
EFI_DEVICE_PATH_PROTOCOL is defined Chapter 9 of the UEFI Specification.

 FileBuffer

A pointer to the buffer with the UEFI file image

 FileSize

The size of the file.

BootPolicy

A boot policy that was used to call LoadImage() UEFI service. If
FileAuthentication() is invoked not from the LoadImage(),
BootPolicy must be set to FALSE.

Description
 This service abstracts the invocation of Trusted Computing Group (TCG) measured boot, UEFI
Secure boot, and UEFI User Identity infrastructure. For the former two, the DXE Foundation
invokes the FileAuthentication() with a DevicePath and corresponding image in
FileBuffer memory. The TCG measurement code will record the FileBuffer contents into the
appropriate PCR. The image verification logic will confirm the integrity and provenance of the
image in FileBuffer of length FileSize . The origin of the image will be DevicePath in
these cases.

If DevicePath is NULL, the origin of the image is unknown. Implementation of this service must
apply to such image security policy that is applied to the image with the least trusted origin.

Platform Initialization Specification VOLUME 2 DXE Core Interface

160 3/15/2016 Version 1.4 Errata A

If the FileBuffer is NULL, the interface will determine if the DevicePath can be connected
in order to support the User Identification policy.

Status Codes Returned

12.10 Timer Architectural Protocol

EFI_TIMER_ARCH_PROTOCOL

Summary
Used to set up a periodic timer interrupt using a platform specific timer, and a processor-specific
interrupt vector. This protocol enables the use of the SetTimer() Boot Service. This protocol
must be produce by a boot service or runtime DXE driver and may only be consumed by the DXE
Foundation or DXE drivers that produce other DXE Architectural Protocols.

GUID
#define EFI_TIMER_ARCH_PROTOCOL_GUID \
 {0x26baccb3,0x6f42,0x11d4,0xbc,\
 0xe7,0x0,0x80,0xc7,0x3c,0x88,0x81}

EFI_SUCCESS The file specified by DevicePath and non-NULL

FileBuffer did authenticate, and the platform policy dictates

that the DXE Foundation may use the file

EFI_SUCCESS The device path specified by NULL device path DevicePath

and non-NULL FileBuffer did authenticate, and the platform

policy dictates that the DXE Foundation may execute the image in

FileBuffer.

EFI_SUCCESS FileBuffer is NULL and current user has permission to start

UEFI device drivers on the device path specified by

DevicePath.

EFI_SECURITY_VIOLATION The file specified by DevicePath and FileBuffer did not

authenticate, and the platform policy dictates that the file should be
placed in the untrusted state. The image has been added tothe file
execution table.

EFI_ACCESS_DENIED The file specified by File and FileBuffer did not

authenticate, and the platform policy dictates that the DXE

Foundation many not use File.

EFI_SECURITY_VIOLATION FileBuffer FileBuffer is NULL and the user has no

permission to start UEFI device drivers on the device path specified

by DevicePath.

EFI_SECURITY_VIOLATION FileBuffer is not NULL and the user has no permission to load

drivers from the device path specified by DevicePath. The

image has been added into the list of the deferred images.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 161

Protocol Interface Structure
typedef struct _EFI_TIMER_ARCH_PROTOCOL {
 EFI_TIMER_REGISTER_HANDLER RegisterHandler;
 EFI_TIMER_SET_TIMER_PERIOD SetTimerPeriod;
 EFI_TIMER_GET_TIMER_PERIOD GetTimerPeriod;
 EFI_TIMER_GENERATE_SOFT_INTERRUPT GenerateSoftInterrupt;
} EFI_TIMER_ARCH_PROTOCOL;

Parameters
RegisterHandler

Registers a handler that will be called each time the timer interrupt fires. See the
RegisterHandler() function description. TimerPeriod defines the
minimum time between timer interrupts, so TimerPeriod will also be the minimum
time between calls to the registered handler.

SetTimerPeriod

Sets the period of the timer interrupt in 100 ns units. See the SetTimerPeriod()
function description. This function is optional and may return EFI_UNSUPPORTED.
If this function is supported, then the timer period will be rounded up to the nearest
supported timer period.

GetTimerPeriod

Retrieves the period of the timer interrupt in 100 ns units. See the
GetTimerPeriod() function description.

GenerateSoftInterrupt

Generates a soft timer interrupt that simulates the firing of the timer interrupt. This
service can be used to invoke the registered handler if the timer interrupt has been
masked for a period of time. See the GenerateSoftInterrupt() function
description.

Description
This protocol provides the services to initialize a periodic timer interrupt and to register a handler
that is called each time the timer interrupt fires. It may also provide a service to adjust the rate of the
periodic timer interrupt. When a timer interrupt occurs, the handler is passed the amount of time that
has passed since the previous timer interrupt.

Platform Initialization Specification VOLUME 2 DXE Core Interface

162 3/15/2016 Version 1.4 Errata A

EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()

Summary
Registers a handler that is called each timer the timer interrupt fires.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER_REGISTER_HANDLER) (
 IN CONST EFI_TIMER_ARCH_PROTOCOL *This,
 IN EFI_TIMER_NOTIFY NotifyFunction
);

Parameters
This

The EFI_TIMER_ARCH_PROTOCOL instance.

NotifyFunction

The function to call when a timer interrupt fires. This function executes at
EFI_TPL_HIGH_LEVEL. The DXE Foundation will register a handler for the timer
interrupt, so it can know how much time has passed. This information is used to
signal timer based events. NULL will unregister the handler. Type
EFI_TIMER_NOTIFY is defined in "Related Definitions" below.

Description
This function registers the handler NotifyFunction so it is called every time the timer interrupt
fires. It also passes the amount of time since the last handler call to the NotifyFunction. If
NotifyFunction is NULL, then the handler is unregistered. If the handler is registered, then
EFI_SUCCESS is returned. If the processor does not support registering a timer interrupt handler,
then EFI_UNSUPPORTED is returned. If an attempt is made to register a handler when a handler is
already registered, then EFI_ALREADY_STARTED is returned. If an attempt is made to unregister
a handler when a handler is not registered, then EFI_INVALID_PARAMETER is returned. If an
error occurs attempting to register the NotifyFunction with the timer interrupt, then
EFI_DEVICE_ERROR is returned.

Related Definitions
typedef
VOID
(EFIAPI *EFI_TIMER_NOTIFY) (
 IN UINT64 Time
);

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 163

Paramters
Time

Time since the last timer interrupt in 100 ns units. This will typically be
TimerPeriod, but if a timer interrupt is missed, and the
EFI_TIMER_ARCH_PROTOCOL driver can detect missed interrupts, then Time will
contain the actual amount of time since the last interrupt.

Status Codes Returned

EFI_SUCCESS The timer handler was registered.

EFI_UNSUPPORTED The platform does not support timer interrupts.

EFI_ALREADY_STARTED NotifyFunction is not NULL, and a handler is already

registered.

EFI_INVALID_PARAMETER NotifyFunction is NULL, and a handler was not previously

registered.

EFI_DEVICE_ERROR The timer handler could not be registered.

Platform Initialization Specification VOLUME 2 DXE Core Interface

164 3/15/2016 Version 1.4 Errata A

EFI_TIMER_ARCH_PROTOCOL.SetTimerPeriod()

Summary
Sets the rate of the periodic timer interrupt.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER_SET_TIMER_PERIOD) (
 IN CONST EFI_TIMER_ARCH_PROTOCOL *This,
 IN UINT64 TimerPeriod
);

Parameters
This

The EFI_TIMER_ARCH_PROTOCOL instance.

TimerPeriod

The rate to program the timer interrupt in 100 ns units. If the timer hardware is not
programmable, then EFI_UNSUPPORTED is returned. If the timer is programmable,
then the timer period will be rounded up to the nearest timer period that is supported
by the timer hardware. If TimerPeriod is set to 0, then the timer interrupts will be
disabled.

Description
This function adjusts the period of timer interrupts to the value specified by TimerPeriod. If the
timer period is updated, then EFI_SUCCESS is returned. If the timer hardware is not
programmable, then EFI_UNSUPPORTED is returned. If an error occurs while attempting to update
the timer period, then the timer hardware will be put back in its state prior to this call, and
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt is disabled.
This is not the same as disabling the processor's interrupts. Instead, it must either turn off the timer
hardware, or it must adjust the interrupt controller so that a processor interrupt is not generated when
the timer interrupt fires.

Status Codes Returned

EFI_SUCCESS The timer period was changed.

EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.

EFI_DEVICE_ERROR The timer period could not be changed due to a device error.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 165

EFI_TIMER_ARCH_PROTOCOL.GetTimerPeriod()

Summary
Retrieves the rate of the periodic timer interrupt.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER_GET_TIMER_PERIOD) (
 IN CONST EFI_TIMER_ARCH_PROTOCOL *This,
 OUT UINT64 *TimerPeriod
);

Parameters
This

The EFI_TIMER_ARCH_PROTOCOL instance.

TimerPeriod

A pointer to the timer period to retrieve in 100 ns units. If 0 is returned, then the timer
is currently disabled.

Description
This function retrieves the period of timer interrupts in 100 ns units, returns that value in
TimerPeriod, and returns EFI_SUCCESS. If TimerPeriod is NULL, then
EFI_INVALID_PARAMETER is returned. If a TimerPeriod of 0 is returned, then the timer is
currently disabled.

Status Codes Returned

EFI_SUCCESS The timer period was returned in TimerPeriod.

EFI_INVALID_PARAMETER TimerPeriod is NULL.

Platform Initialization Specification VOLUME 2 DXE Core Interface

166 3/15/2016 Version 1.4 Errata A

EFI_TIMER_ARCH_PROTOCOL.GenerateSoftInterrupt()

Summary
Generates a soft timer interrupt.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER_GENERATE_SOFT_INTERRUPT) (
 IN CONST EFI_TIMER_ARCH_PROTOCOL *This
);

Parameters
This

The EFI_TIMER_ARCH_PROTOCOL instance.

Description
This function generates a soft timer interrupt. If the platform does not support soft timer interrupts,
then EFI_UNSUPPORTED is returned. Otherwise, EFI_SUCCESS is returned. If a handler has
been registered through the EFI_TIMER_ARCH_PROTOCOL.RegisterHandler() service,
then a soft timer interrupt will be generated. If the timer interrupt is enabled when this service is
called, then the registered handler will be invoked. The registered handler should not be able to
distinguish a hardware-generated timer interrupt from a software-generated timer interrupt.

Status Codes Returned

EFI_SUCCESS The soft timer interrupt was generated.

EFI_UNSUPPORTED The platform does not support the generation of soft timer
interrupts.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 167

12.11 Variable Architectural Protocol

EFI_VARIABLE_ARCH_PROTOCOL

Summary
Provides the services required to get and set environment variables. This protocol must be produced
by a runtime DXE driver and may be consumed only by the DXE Foundation.

GUID
#define EFI_VARIABLE_ARCH_PROTOCOL_GUID \
 {0x1e5668e2,0x8481,0x11d4,0xbc,\
 0xf1,0x0,0x80,0xc7,0x3c,0x88,0x81}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the GetVariable(), GetNextVariableName(), SetVariable() and
QueryVariableInfo() fields of the UEFI Runtime Services Table. See “Runtime
Capabilities” on page 35 for details on these services. After the three fields of the UEFI Runtime
Services Table have been initialized, the driver must install the
EFI_VARIABLE_ARCH_PROTOCOL_GUID on a new handle with a NULL interface pointer. The
installation of this protocol informs the DXE Foundation that the read-only and the volatile
environment variable related services are now available and that the DXE Foundation must update
the 32-bit CRC of the UEFI Runtime Services Table. The full complement of environment variable
services are not available until both this protocol and
EFI_VARIABLE_WRITE_ARCH_PROTOCOL are installed. DXE drivers that require read-only
access or read/write access to volatile environment variables must have this architectural protocol in
their dependency expressions. DXE drivers that require write access to nonvolatile environment
variables must have the EFI_VARIABLE_WRITE_ARCH_PROTOCOL in their dependency
expressions.

Platform Initialization Specification VOLUME 2 DXE Core Interface

168 3/15/2016 Version 1.4 Errata A

12.12 Variable Write Architectural Protocol

EFI_VARIABLE_WRITE_ARCH_PROTOCOL

Summary
Provides the services required to set nonvolatile environment variables. This protocol must be
produced by a runtime DXE driver and may be consumed only by the DXE Foundation.

GUID
#define EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID \
 {0x6441f818,0x6362,0x4e44,0xb5,\
 0x70,0x7d,0xba,0x31,0xdd,0x24,0x53}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver may update the
SetVariable() field of the UEFI Runtime Services Table. See “Runtime Capabilities” on
page 35 for details on this service. After the UEFI Runtime Services Table has been initialized, the
driver must install the EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID on a new handle with
a NULL interface pointer. The installation of this protocol informs the DXE Foundation that the
write services for nonvolatile environment variables are now available and that the DXE Foundation
must update the 32-bit CRC of the UEFI Runtime Services Table. The full complement of
environment variable services are not available until both this protocol and
EFI_VARIABLE_ARCH_PROTOCOL are installed. DXE drivers that require read-only access or
read/write access to volatile environment variables must have the
EFI_VARIABLE_WRITE_ARCH_PROTOCOL in their dependency expressions. DXE drivers that
require write access to nonvolatile environment variables must have this architectural protocol in
their dependency expressions.

12.13 EFI Capsule Architectural Protocol

EFI_CAPSULE_ARCH_PROTOCOL

Summary
Provides the services for capsule update.

GUID
#define EFI_CAPSULE_ARCH_PROTOCOL_GUID \
 { 0x5053697e, 0x2cbc, 0x4819, 0x90, \
 0xd9, 0x5, 0x80, 0xde, 0xee, 0x57, 0x54 }

Description
The DXE Driver that produces this protocol must be a runtime driver. The driver is responsible for
initializing the CapsuleUpdate() and QueryCapsuleCapabilities() fields of the UEFI
Runtime Services Table. After the two fields of the UEFI Runtime Services Table have been

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 169

initialized, the driver must install the EFI_CAPSULE_ARCH_PROTOCOL_GUID on a new handle
with a NULL interface pointer. The installation of this protocol informs the DXE Foundation that
the Capsule related services are now available and that the DXE Foundation must update the 32-bit
CRC of the UEFI Runtime Services Table.

12.14 Watchdog Timer Architectural Protocol
The following topics provide a detailed description of the
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. This protocol is used to implement the Boot
Service SetWatchdogTimer(). The watchdog timer may be implemented in software using
Boot Services, or it may be implemented with specialized hardware. The protocol provides a service
to register a handler when the watchdog timer fires and a service to set the amount of time to wait
before the watchdog timer is fired.

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL

Summary
Used to program the watchdog timer and optionally register a handler when the watchdog timer
fires. This protocol must be produced by a boot service or runtime DXE driver and may be
consumed only by the DXE Foundation or DXE drivers that produce other DXE Architectural
Protocols. If a platform wishes to perform a platform-specific action when the watchdog timer
expires, then the DXE driver that contains the implementation of the EFI_BDS_ARCH_PROTOCOL
should use this protocol's RegisterHandler() service.

GUID
#define EFI_WATCHDOG_TIMER_ARCH_PROTOCOL_GUID \
 {0x665E3FF5,0x46CC,0x11d4,0x9A,\
 0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D}

Protocol Interface Structure
typedef struct _EFI_WATCHDOG_TIMER_ARCH_PROTOCOL {
 EFI_WATCHDOG_TIMER_REGISTER_HANDLER RegisterHandler;
 EFI_WATCHDOG_TIMER_SET_TIMER_PERIOD SetTimerPeriod;
 EFI_WATCHDOG_TIMER_GET_TIMER_PERIOD GetTimerPeriod;
} EFI_WATCHDOG_TIMER_ARCH_PROTOCOL;

Parameters
RegisterHandler

Registers a handler that is invoked when the watchdog timer fires. See the
RegisterHandler() function description.

SetTimerPeriod

Sets the amount of time in 100 ns units to wait before the watchdog timer is fired. See
the SetTimerPeriod() function description. If this function is supported, then
the watchdog timer period will be rounded up to the nearest supported watchdog timer
period.

Platform Initialization Specification VOLUME 2 DXE Core Interface

170 3/15/2016 Version 1.4 Errata A

GetTimerPeriod

Retrieves the amount of time in 100 ns units that the system will wait before the
watchdog timer is fired. See the GetTimerPeriod() function description.

Description
This protocol provides the services required to implement the Boot Service
SetWatchdogTimer(). It provides a service to set the amount of time to wait before firing the
watchdog timer, and it also provides a service to register a handler that is invoked when the
watchdog timer fires. This protocol can implement the watchdog timer by using the event and timer
Boot Services, or it can make use of custom hardware. When the watchdog timer fires, control will
be passed to a handler if one has been registered. If no handler has been registered, or the registered
handler returns, then the system will be reset by calling the Runtime Service ResetSystem().

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 171

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.RegisterHandler()

Summary
Registers a handler that is to be invoked when the watchdog timer fires.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WATCHDOG_TIMER_REGISTER_HANDLER) (
 IN CONST EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
 IN EFI_WATCHDOG_TIMER_NOTIFY NotifyFunction
);

Parameters
This

The EFI_WATCHDOG_TIMER_ARCH_PROTOCOL instance.

NotifyFunction

The function to call when the watchdog timer fires. If this is NULL, then the handler
will be unregistered. Type EFI_WATCHDOG_TIMER_NOTIFY is defined in
"Related Definitions" below.

Description
This function registers a handler that is to be invoked when the watchdog timer fires. By default,
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL will call the Runtime Service ResetSystem()
when the watchdog timer fires. If a NotifyFunction is registered, then NotifyFunction
will be called before the Runtime Service ResetSystem() is called. If NotifyFunction is
NULL, then the watchdog handler is unregistered. If a watchdog handler is registered, then
EFI_SUCCESS is returned. If an attempt is made to register a handler when a handler is already
registered, then EFI_ALREADY_STARTED is returned. If an attempt is made to uninstall a handler
when a handler is not installed, then return EFI_INVALID_PARAMETER.

Related Definitions
typedef
VOID
(EFIAPI *EFI_WATCHDOG_TIMER_NOTIFY) (
 IN UINT64 Time
);

Time

The time in 100 ns units that has passed since the watchdog timer was armed. For the
notify function to be called, this must be greater than TimerPeriod.

Status Codes Returned

EFI_SUCCESS The watchdog timer handler was registered or unregistered.

Platform Initialization Specification VOLUME 2 DXE Core Interface

172 3/15/2016 Version 1.4 Errata A

EFI_ALREADY_STARTED NotifyFunction is not NULL, and a handler is already

registered.

EFI_INVALID_PARAMETER NotifyFunction is NULL, and a handler was not previously

registered.

DXE Architectural Protocols

Version 1.4 Errata A 3/15/2016 173

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.SetTimerPeriod()

Summary
Sets the amount of time in the future to fire the watchdog timer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WATCHDOG_TIMER_SET_TIMER_PERIOD) (
 IN CONST EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
 IN UINT64 TimerPeriod
);

Parameters
This

The EFI_WATCHDOG_TIMER_ARCH_PROTOCOL instance.

TimerPeriod

The amount of time in 100 ns units to wait before the watchdog timer is fired. If
TimerPeriod is zero, then the watchdog timer is disabled.

Description
This function sets the amount of time to wait before firing the watchdog timer to TimerPeriod
100 ns units. If TimerPeriod is zero, then the watchdog timer is disabled.

Status Codes Returned

EFI_SUCCESS The watchdog timer has been programmed to fire in Time 100 ns

units.

EFI_DEVICE_ERROR A watchdog timer could not be programmed due to a device error.

Platform Initialization Specification VOLUME 2 DXE Core Interface

174 3/15/2016 Version 1.4 Errata A

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.GetTimerPeriod()

Summary
Retrieves the amount of time in 100 ns units that the system will wait before firing the watchdog
timer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WATCHDOG_TIMER_GET_TIMER_PERIOD) (
 IN CONST EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
 OUT UINT64 *TimerPeriod
);

Parameters
This

The EFI_WATCHDOG_TIMER_ARCH_PROTOCOL instance.

TimerPeriod

A pointer to the amount of time in 100 ns units that the system will wait before the
watchdog timer is fired. If TimerPeriod of zero is returned, then the watchdog
timer is disabled.

Description
This function retrieves the amount of time the system will wait before firing the watchdog timer.
This period is returned in TimerPeriod, and EFI_SUCCESS is returned. If TimerPeriod is
NULL, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS The amount of time that the system will wait before firing the watchdog

timer was returned in TimerPeriod.

EFI_INVALID_PARAMETER TimerPeriod is NULL.

Version 1.4 Errata A 3/15/2016 175

13
DXE Boot Services Protocol

13.1 Overview
This chapter defines the services required for the Multiprocessor (MP) Services Protocol of Platform
Initialization Specification.

This specification does the following:

• Describes the basic components of the MP Services Protocol

• Provides code definitions for the MP Services Protocol and the MP-related type definitions.

13.2 Conventions and Abbreviations
The following terms are used throughout this specification.

AP

Application processor. All other processors in a computer system other than the boot-strap
processor are called application processors.

BSP

Boot-strap processor. A processor in an MP platform that is chosen to execute the modules
that are necessary for booting the system. It is not necessary that the same processor that was
selected earlier as a BSP shall remain a BSP throughout an entire boot session.

DXE

Driver Execute Environment. Environment to support running modular code in the form of
EFI drivers; common to all platforms; typically in C language.

EFI

Extensible Firmware Interface – the specification containing interface definitions for
firmware. This includes both interfaces used by the operating system for booting as well as
interfaces that are used for internal construction of firmware.

MP

Multiprocessor.

13.3 MP Services Protocol Overview
The MP Services Protocol provides a generalized way of performing following tasks:

• Retrieving information of multi-processor environment and MP-related status of specific
processors.

• Dispatching user-provided function to APs.

Platform Initialization Specification VOLUME 2 DXE Core Interface

176 3/15/2016 Version 1.4 Errata A

• Maintain MP-related processor status.

The MP Services Protocol must be produced on any system with more than one logical processor.

The Protocol is available only during boot time.

MP Services Protocol is hardware-independent. Most of the logic of this protocol is architecturally
neutral. It abstracts the multi-processor environment and status of processors, and provides
interfaces to retrieve information, maintain, and dispatch.

MP Services Protocol may be consumed by ACPI module. The ACPI module may use this protocol
to retrieve data that are needed for an MP platform and report them to OS.

MP Services Protocol may also be used to program and configure processors, such as MTRR
synchronization for memory space attributes setting in DXE Services.

MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot by taking
advantage of the processing capabilities of the APs, for example, using APs to help test system
memory in parallel with other device initialization.

Diagnostics applications may also use this protocol for multi-processor.

13.4 MP Services Protocol
This section contains the basic definitions of the MP Services Protocol.

EFI_MP_SERVICES_PROTOCOL

Summary
When installed, the MP Services Protocol produces a collection of services that are needed for MP
management.

GUID
#define EFI_MP_SERVICES_PROTOCOL_GUID \
 {0x3fdda605,0xa76e,0x4f46,{0xad,0x29,0x12,0xf4,\
 0x53,0x1b,0x3d,0x08}}

Protocol Interface Structure
typedef struct _EFI_MP_SERVICES_PROTOCOL {
 EFI_MP_SERVICES_GET_NUMBER_OF_PROCESSORS GetNumberOfProcessors;
 EFI_MP_SERVICES_GET_PROCESSOR_INFO GetProcessorInfo;
 EFI_MP_SERVICES_STARTUP_ALL_APS StartupAllAPs;
 EFI_MP_SERVICES_STARTUP_THIS_AP StartupThisAP;
 EFI_MP_SERVICES_SWITCH_BSP SwitchBSP;
 EFI_MP_SERVICES_ENABLEDISABLEAP EnableDisableAP;
 EFI_MP_SERVICES_WHOAMI WhoAmI;
} EFI_MP_SERVICES_PROTOCOL;

DXE Boot Services Protocol

Version 1.4 Errata A 3/15/2016 177

Parameters
GetNumberOfProcessors

Gets the number of logical processors and the number of enabled logical processors in
the system.

GetProcessorInfo

Gets detailed information on the requested processor at the instant this call is made.

StartupAllAPs

Starts up all the enabled APs in the system to run the function provided by the caller.

StartupThisAP

Starts up the requested AP to run the function provided by the caller.

SwitchBSP

Switches the requested AP to be the BSP from that point onward. This service
changes the BSP for all purposes.

EnableDisableAP

Enables and disables the given AP from that point onward.

WhoAmI

Gets the handle number of the caller processor.

Description
The MP Services Protocol must be produced on any system with more than one logical processor.
Before the UEFI event EFI_EVENT_LEGACY_BOOT_GUID or
EFI_EVENT_GROUP_EXIT_BOOT_SERVICES is signaled, the module that produces this
protocol is required to place all APs into an idle state whenever the APs are disabled or the APs are
not executing code as requested through the StartupAllAPs() or StartupThisAP()
services. The idle state of an AP is implementation dependent before the UEFI event
EFI_EVENT_LEGACY_BOOT_GUID or EFI_EVENT_GROUP_EXIT_BOOT_SERVICES is
signaled.

After the UEFI event EFI_EVENT_LEGACY_BOOT_GUID or
EFI_EVENT_GROUP_EXIT_BOOT_SERVICES is signaled, all the APs must be placed in the OS
compatible CPU state as defined by the UEFI Specification. Implementations of this protocol may
use the UEFI event EFI_EVENT_LEGACY_BOOT_GUID or
EFI_EVENT_GROUP_EXIT_BOOT_SERVICES to force APs into the OS compatible state as
defined by the UEFI Specification. Modules that use this protocol must guarantee that all non-
blocking mode requests on all APs have been completed before the UEFI event
EFI_EVENT_LEGACY_BOOT_GUID or EFI_EVENT_GROUP_EXIT_BOOT_SERVICES is
signaled. Since the order that event notification functions in the same event group are executed is
not deterministic, an event of type EFI_EVENT_LEGACY_BOOT_GUID or
EFI_EVENT_GROUP_EXIT_BOOT_SERVICES can not be used to guarantee that APs have
completed their non-blocking mode requests.

Platform Initialization Specification VOLUME 2 DXE Core Interface

178 3/15/2016 Version 1.4 Errata A

EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors()

Summary
This service retrieves the number of logical processor in the platform and the number of those
logical processors that are currently enabled. This service may only be called from the BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_GET_NUMBER_OF_PROCESSORS) (
 IN EFI_MP_SERVICES_PROTOCOL *This,
 OUT UINTN *NumberOfProcessors,
 OUT UINTN *NumberOfEnabledProcessors
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

NumberOfProcessors

Pointer to the total number of logical processors in the system, including the BSP and
all enabled and disabled APs.

NumberOfEnabledProcessors

Pointer to the number of logical processors in the platform including the BSP that are
currently enabled.

Description
This function is used to retrieve the following information:

• The number of logical processors that are present in the system

• The number of enabled logical processors in the system at the instant this call is made.

Since MP Service Protocol provides services to enable and disable processors dynamically, the
number of enabled logical processors may vary during the course of a boot session.

This service may only be called from the BSP.

If this service is called from an AP, then EFI_DEVICE_ERROR is returned. If
NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors is returned
in NumberOfProcessors, the number of currently enabled processor is returned in
NumberOfEnabledProcessors, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The number of logical processors and enabled logical
processors was retrieved.

EFI_DEVICE_ERROR The calling processor is an AP.

DXE Boot Services Protocol

Version 1.4 Errata A 3/15/2016 179

EFI_INVALID_PARAMETER NumberOfProcessors is NULL

EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL

Platform Initialization Specification VOLUME 2 DXE Core Interface

180 3/15/2016 Version 1.4 Errata A

EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo()

Summary
Gets detailed MP-related information on the requested processor at the instant this call is made. This
service may only be called from the BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_GET_PROCESSOR_INFO) (
 IN EFI_MP_SERVICES_PROTOCOL *This,
 IN UINTN ProcessorNumber,
 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

ProcessorNumber

The handle number of processor. The range is from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().

ProcessorInfoBuffer

A pointer to the buffer where information for the requested processor is deposited.
The buffer is allocated by the caller. Type EFI_PROCESSOR_INFORMATION is
defined in "Related Definitions" below.

Description
This service retrieves detailed MP-related information about any processor on the platform. Note the
following:

• The processor information may change during the course of a boot session.

• he data of information presented here is entirely MP related.

Information regarding the number of caches and their sizes, frequency of operation, slot numbers is
all considered platform-related information and is not provided by this service.

This service may only be called from the BSP.

Related Definitions
//***
// EFI_PROCESSOR_INFORMATION
//***
typedef struct {
 UINT64 ProcessorId;

DXE Boot Services Protocol

Version 1.4 Errata A 3/15/2016 181

 UINT32 StatusFlag;
 EFI_CPU_PHYSICAL_LOCATION Location;
} EFI_PROCESSOR_INFORMATION;

ProcessorId

The unique processor ID determined by system hardware.

For IPF, the lower 16 bits contains id/eid, and higher bits are reserved.

StatusFlag

Flags indicating if the processor is BSP or AP, if the processor is enabled or disabled,
and if the processor is healthy. The bit format is defined below.

Location

The physical location of the processor, including the physical package number that
identifies the cartridge, the physical core number within package, and logical thread
number within core. Type EFI_PHYSICAL_LOCATION is defined below.

//***
// StatusFlag Bits Definition
//***
#define PROCESSOR_AS_BSP_BIT 0x00000001
#define PROCESSOR_ENABLED_BIT 0x00000002
#define PROCESSOR_HEALTH_STATUS_BIT 0x00000004

PROCESSOR_AS_BSP_BIT

This bit indicates whether the processor is playing the role of BSP. If the bit is 1, then
the processor is BSP. Otherwise, it is AP.

PROCESSOR_ENABLED_BIT

This bit indicates whether the processor is enabled. If the bit is 1, then the processor is
enabled. Otherwise, it is disabled.

PROCESSOR_HEALTH_STATUS_BIT

This bit indicates whether the processor is healthy. If the bit is 1, then the processor is
healthy. Otherwise, some fault has been detected for the processor.

Bits 3..31 are reserved and must be 0. The following table shows all the possible combinations of
the StatusFlag bits:

Table 33. StatusFlag bits

BSP ENABLED HEALTH Description

0 0 0 Unhealthy Disabled AP.

0 0 1 Healthy Disabled AP.

0 1 0 Unhealthy Enabled AP.

0 1 1 Healthy Enabled AP.

1 0 0 Invalid. The BSP can never be in the disabled state.

1 0 1 Invalid. The BSP can never be in the disabled state.

Platform Initialization Specification VOLUME 2 DXE Core Interface

182 3/15/2016 Version 1.4 Errata A

//***
// EFI_CPU_PHYSICAL_LOCATION
//***
typedef struct {
 UINT32 Package;
 UINT32 Core;
 UINT32 Thread;
} EFI_CPU_PHYSICAL_LOCATION;

Package

Zero-based physical package number that identifies the cartridge of the processor.

Core

Zero-based physical core number within package of the processor.

Thread

Zero-based logical thread number within core of the processor.

Status Codes Returned

1 1 0 Unhealthy Enabled BSP.

1 1 1 Healthy Enabled BSP.

EFI_SUCCESS Processor information was returned.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.

EFI_NOT_FOUND The processor with the handle specified by

ProcessorNumber does not exist in the platform.

BSP ENABLED HEALTH Description

DXE Boot Services Protocol

Version 1.4 Errata A 3/15/2016 183

EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()

Summary
This service executes a caller provided function on all enabled APs. APs can run either
simultaneously or one at a time in sequence. This service supports both blocking and non-blocking
requests. The non-blocking requests use EFI events so the BSP can detect when the APs have
finished. See "Non-blocking Execution Support" below for details. This service may only be called
from the BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_STARTUP_ALL_APS) (
 IN EFI_MP_SERVICES_PROTOCOL *This,
 IN EFI_AP_PROCEDURE Procedure,
 IN BOOLEAN SingleThread,
 IN EFI_EVENT WaitEvent OPTIONAL,
 IN UINTN TimeoutInMicroSeconds,
 IN VOID *ProcedureArgument OPTIONAL,
 OUT UINTN **FailedCpuList OPTIONAL
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

Procedure

A pointer to the function to be run on enabled APs of the system. Type
EFI_AP_PROCEDURE is defined in “Related Definitions” of this function, below.

SingleThread

If TRUE, then all the enabled APs execute the function specified by Procedure
one by one, in ascending order of processor handle number.

If FALSE, then all the enabled APs execute the function specified by Procedure
simultaneously.

WaitEvent

The event created by the caller with CreateEvent() service.

If it is NULL, then execute in blocking mode. BSP waits until all APs finish or
TimeoutInMicroSeconds expires.

If it’s not NULL, then execute in non-blocking mode. BSP requests the function
specified by Procedure to be started on all the enabled APs, and go on executing
immediately. If all return from Procedure or TimeoutInMicroSeconds
expires, this event is signaled. The BSP can use the CheckEvent() or
WaitForEvent() services to check the state of event.

Platform Initialization Specification VOLUME 2 DXE Core Interface

184 3/15/2016 Version 1.4 Errata A

Type EFI_EVENT is defined in CreateEvent() in the Unified Extensible
Firmware Interface Specification (Version 2.0).

TimeoutInMicroseconds

Indicates the time limit in microseconds for APs to return from Procedure, either
for blocking or non-blocking mode. Zero means infinity.

If the timeout expires before all APs return from Procedure, then Procedure
on the failed APs is terminated. All enabled APs are available for next function
assigned by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() or
EFI_MP_SERVICES_PROTOCOL.StartupThisAP().

If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT.

If the timeout expires in non-blocking mode, WaitEvent is signaled with
SignalEvent().

ProcedureArgument

The parameter passed into Procedure for all APs.

FailedCpuList

If NULL, this parameter is ignored.

Otherwise, if all APs finish successfully, then its content is set to NULL. If not all APs
finish before timeout expires, then its content is set to address of the buffer holding
handle numbers of the failed APs. The buffer is allocated by MP Service Protocol, and
it’s the caller’s responsibility to free the buffer with FreePool() service.

In blocking mode, it is ready for consumption when the call returns. In non-blocking
mode, it is ready when WaitEvent is signaled.
The list of failed CPU is terminated by END_OF_CPU_LIST. It is defined in
“Related Definitions” below.

Description
This function is used to dispatch all the enabled APs to the function specified by Procedure.

If any enabled AP is busy, then EFI_NOT_READY is returned immediately and Procedure is
not started on any AP.

If SingleThread is TRUE, all the enabled APs execute the function specified by Procedure
one by one, in ascending order of processor handle number. Otherwise, all the enabled APs execute
the function specified by Procedure simultaneously.

If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all APs finish or
TimeoutInMicroSecs expires. Otherwise, execution is in non-blocking mode, and the BSP
returns from this service without waiting for APs. If a non-blocking mode is requested after the
UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, then EFI_UNSUPPORTED
must be returned.

If the timeout specified by TimeoutInMicroseconds expires before all APs return from
Procedure, then Procedure on the failed APs is terminated. All enabled APs are always
available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()and
EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL,
its content points to the list of processor handle numbers in which Procedure was terminated.

DXE Boot Services Protocol

Version 1.4 Errata A 3/15/2016 185

This service may only be called from the BSP.

Note: It is the responsibility of the consumer of the
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() to make sure that the nature of the
code that is executed on the BSP and the dispatched APs is well controlled. The MP Services
Protocol does not guarantee that the Procedure function is MP-safe. Hence, the tasks that can
be run in parallel are limited to certain independent tasks and well-controlled exclusive code. EFI
services and protocols may not be called by APs unless otherwise specified.

Related Definitions
#define END_OF_CPU_LIST 0xffffffff

typedef
VOID
(EFIAPI *EFI_AP_PROCEDURE) (
 IN VOID *ProcedureArgument
);

ProcedureArgument

Pointer to the procedure’s argument

Non-Blocking Execution Support
The following usage guidelines must be followed for non-blocking execution support.

In blocking execution mode, BSP waits until all APs finish or TimeoutInMicroSeconds
expires.

In non-blocking execution mode, BSP is freed to return to the caller and then proceed to the next
task without having to wait for APs. The following sequence needs to occur in a non-blocking
execution mode:

1. The caller that intends to use this MP Services Protocol in non-blocking mode creates
WaitEvent by calling the EFI CreateEvent() service.

The caller invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter
WaitEvent is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests
the function specified by Procedure to be started on all the enabled APs, and releases the BSP to
continue with other tasks.

2. The caller can use the CheckEvent() and WaitForEvent() services to check the state of
the WaitEvent created in step 1.

3. When the APs complete their task or TimeoutInMicroSecondss expires, the MP Service
signals WaitEvent by calling the EFI SignalEvent() function. If FailedCpuList is
not NULL, its content is available when WaitEvent is signaled. If all APs returned from
Procedure prior to the timeout, then FailedCpuList is set to NULL. If not all APs return
from Procedure before the timeout, then FailedCpuList is filled in with the list of the
failed APs. The buffer is allocated by MP Service Protocol using AllocatePool(). It is the
caller’s responsibility to free the buffer with FreePool() service.

4. This invocation of SignalEvent() function informs the caller that invoked
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed

Platform Initialization Specification VOLUME 2 DXE Core Interface

186 3/15/2016 Version 1.4 Errata A

the specified task or a timeout occurred. The contents of FailedCpuList can be examined to
determine which APs did not complete the specified task prior to the timeout.

Status Codes Returned

EFI_SUCCESS In blocking mode, all APs have finished before the timeout
expired.

EFI_SUCCESS In non-blocking mode, function has been dispatched to all
enabled APs.

EFI_UNSUPPORTED A non-blocking mode request was made after the UEFI event

EFI_EVENT_GROUP_READY_TO_BOOT was signaled.

EFI_DEVICE_ERROR Caller processor is AP.

EFI_NOT_STARTED No enabled APs exist in the system.

EFI_NOT_READY Any enabled APs are busy.

EFI_TIMEOUT In blocking mode, the timeout expired before all enabled APs
have finished.

EFI_INVALID_PARAMETER Procedure is NULL.

DXE Boot Services Protocol

Version 1.4 Errata A 3/15/2016 187

EFI_MP_SERVICES_PROTOCOL.StartupThisAP()

Summary
This service lets the caller get one enabled AP to execute a caller-provided function. The caller can
request the BSP to either wait for the completion of the AP or just proceed with the next task by
using the EFI event mechanism. See the "Non-blocking Execution Support" section in
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details. This service may only
be called from the BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_STARTUP_THIS_AP) (
 IN EFI_MP_SERVICES_PROTOCOL*This,
 IN EFI_AP_PROCEDURE Procedure,
 IN UINTN ProcessorNumber,
 IN EFI_EVENT WaitEvent OPTIONAL,
 IN UINTN TimeoutInMicroseconds,
 IN VOID *ProcedureArgument OPTIONAL,
 OUT BOOLEAN *Finished OPTIONAL
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

Procedure

A pointer to the function to be run on the designated AP of the system. Type
EFI_AP_PROCEDURE is defined in the “Related Definitions” of
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()(above).

ProcessorNumber

The handle number of the AP. The range is from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().

WaitEvent

The event created by the caller with CreateEvent() service.

If it is NULL, then execute in blocking mode. BSP waits until this AP finishes or
TimeoutInMicroSeconds expires.

If it’s not NULL, then execute in non-blocking mode. BSP requests the function
specified by Procedure to be started on the AP, and go on executing immediately.
If this AP finishes or TimeoutInMicroSeconds expires, this event is signaled.
BSP can use the CheckEvent() and WaitForEvent() services to check the
state of event.

Platform Initialization Specification VOLUME 2 DXE Core Interface

188 3/15/2016 Version 1.4 Errata A

Type EFI_EVENT is defined in CreateEvent() in the Unified Extensible
Firmware Interface Specification (Version 2.0)

TimeoutInMicrosecsond

Indicates the time limit in microseconds for this AP to finish the function, either for
blocking or non-blocking mode. Zero means infinity.

If the timeout expires before this AP returns from Procedure, then Procedure on the
AP is terminated. The AP is available for subsequent calls to
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
EFI_MP_SERVICES_PROTOCOL.StartupThisAP().

If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT.

If the timeout expires in non-blocking mode, WaitEvent is signaled with
SignalEvent().

ProcedureArgument

The parameter passed into Procedure on the specified AP.

Finished

If NULL, this parameter is ignored.

In blocking mode, this parameter is ignored.

In non-blocking mode, if AP returns from Procedure before the timeout expires, its
content is set to TRUE. Otherwise, the value is set to FALSE. The caller can
determine if the AP returned from Procedure by evaluating this value.

Description
This function is used to dispatch one enabled AP to the function specified by Procedure passing
in the argument specified by ProcedureArgument.

If WaitEvent is NULL, execution is in blocking mode. The BSP waits until the AP finishes or
TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode. BSP
proceeds to the next task without waiting for the AP. If a non-blocking mode is requested after the
UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, then EFI_UNSUPPORTED
must be returned.

If the timeout specified by TimeoutInMicroseconds expires before the AP returns from
Procedure, then execution of Procedure by the AP is terminated. The AP is available for
subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
EFI_MP_SERVICES_PROTOCOL.StartupThisAP().

This service may only be called from the BSP.

Status Codes Returned

EFI_SUCCESS In blocking mode, specified AP finished before the timeout
expires.

EFI_SUCCESS In non-blocking mode, the function has been dispatched to
specified AP.

DXE Boot Services Protocol

Version 1.4 Errata A 3/15/2016 189

EFI_UNSUPPORTED A non-blocking mode request was made after the UEFI event

EFI_EVENT_GROUP_READY_TO_BOOT was signaled.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_TIMEOUT In blocking mode, the timeout expired before the specified AP
has finished.

EFI_NOT_READY The specified AP is busy.

EFI_NOT_FOUND The processor with the handle specified by

ProcessorNumber does not exist.

EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.

EFI_INVALID_PARAMETER Procedure is NULL.

Platform Initialization Specification VOLUME 2 DXE Core Interface

190 3/15/2016 Version 1.4 Errata A

EFI_MP_SERVICES_PROTOCOL.SwitchBSP()

Summary
This service switches the requested AP to be the BSP from that point onward. This service changes
the BSP for all purposes. This service may only be called from the current BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_SWITCH_BSP) (
 IN EFI_MP_SERVICES_PROTOCOL *This,
 IN UINTN ProcessorNumber,
 IN BOOLEAN EnableOldBSP
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

ProcessorNumber

The handle number of AP that is to become the new BSP. The range is from 0 to the
total number of logical processors minus 1. The total number of logical processors can
be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().

EnableOldBSP

If TRUE, then the old BSP will be listed as an enabled AP. Otherwise, it will be
disabled.

Description
This service switches the requested AP to be the BSP from that point onward. This service changes
the BSP for all purposes. The new BSP can take over the execution of the old BSP and continue
seamlessly from where the old one left off. This service may not be supported after the UEFI Event
EFI_EVENT_GROUP_READY_TO_BOOT is signaled.
If the BSP cannot be switched prior to the return from this service, then EFI_UNSUPPORTED must
be returned.

This call can only be performed by the current BSP.

Status Codes Returned

EFI_SUCCESS BSP successfully switched.

EFI_UNSUPPORTED Switching the BSP cannot be completed prior to this service
returning.

EFI_UNSUPPORTED Switching the BSP is not supported.

EFI_SUCCESS The calling processor is an AP.

DXE Boot Services Protocol

Version 1.4 Errata A 3/15/2016 191

EFI_NOT_FOUND The processor with the handle specified by

ProcessorNumber does not exist.

EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or a disabled

AP.

EFI_NOT_READY The specified AP is busy.

Platform Initialization Specification VOLUME 2 DXE Core Interface

192 3/15/2016 Version 1.4 Errata A

EFI_MP_SERVICES_PROTOCOL.EnableDisableAP()

Summary
This service lets the caller enable or disable an AP from this point onward. This service may only be
called from the BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_ENABLEDISABLEAP) (
 IN EFI_MP_SERVICES_PROTOCOL*This,
 IN UINTN ProcessorNumber,
 IN BOOLEAN EnableAP,
 IN UINT32 *HealthFlag OPTIONAL
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

ProcessorNumber

The handle number of AP. The range is from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().

EnableAP

Specifies the new state for the processor specified by ProcessorNumber. TRUE
for enabled, FALSE for disabled.

HealthFlag

If not NULL, a pointer to a value that specifies the new health status of the AP. This
flag corresponds to StatusFlag defined in
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only the
PROCESSOR_HEALTH_STATUS_BIT is used. All other bits are ignored.

If it is NULL, this parameter is ignored.

Description
This service allows the caller enable or disable an AP from this point onward. The caller can
optionally specify the health status of the AP by Health. If an AP is being disabled, then the state
of the disabled AP is implementation dependent. If an AP is enabled, then the implementation must
guarantee that a complete initialization sequence is performed on the AP, so the AP is in a state that
is compatible with an MP operating system. This service may not be supported after the UEFI
Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled.

If the enable or disable AP operation cannot be completed prior to the return from this service, then
EFI_UNSUPPORTED must be returned.

This service may only be called from the BSP.

DXE Boot Services Protocol

Version 1.4 Errata A 3/15/2016 193

Status Codes Returned

EFI_SUCCESS The specified AP successfully enabled or disabled.

EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed prior to this
service returning.

EFI_UNSUPPORTED Enabling or disabling an AP is not supported.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
does not exist.

EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.

Platform Initialization Specification VOLUME 2 DXE Core Interface

194 3/15/2016 Version 1.4 Errata A

EFI_MP_SERVICES_PROTOCOL.WhoAmI()

Summary
This return the handle number for the calling processor. This service may be called from the BSP
and APs.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_WHOAMI) (
 IN EFI_MP_SERVICES_PROTOCOL *This,
 OUT UINTN *ProcessorNumber
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

ProcessorNumber

Pointer to the handle number of AP. The range is from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().

Description
This service returns the processor handle number for the calling processor. The returned value is in
the range from 0 to the total number of logical processors minus 1. The total number of logical
processors can be retrieved with
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be called
from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER is
returned. Otherwise, the current processors handle number is returned in ProcessorNumber,
and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The current processor handle number was returned in

ProcessorNumber.

EFI_INVALID_PARAMETER ProcessorNumber is NULL.

DXE Boot Services Protocol

Version 1.4 Errata A 3/15/2016 195

Platform Initialization Specification VOLUME 2 DXE Core Interface

196 3/15/2016 Version 1.4 Errata A

Version 1.4 Errata A 3/15/2016 197

14
DXE Runtime Protocols

14.1 Introduction
In addition to the architectural protocols listed earlier, there is also a runtime protocol. Specifically,
the ability to report status codes is runtime-callable service that allows for emitting status and
progress information. It was formerly part of the 0.9 DXE-CIS runtime table, but in consideration of
UEFI 2.0 compatibility, this capability has become a separate runtime protocol.

14.2 Status Code Runtime Protocol

EFI_STATUS_CODE_ PROTOCOL

Summary
Provides the service required to report a status code to the platform firmware. This protocol must be
produced by a runtime DXE driver.

GUID
#define EFI_STATUS_CODE_RUNTIME_PROTOCOL_GUID \
 { 0xd2b2b828, 0x826, 0x48a7, 0xb3, 0xdf, 0x98, 0x3c, \
 0x0, 0x60, 0x24, 0xf0}

Protocol Interface Structure
typedef struct _EFI_STATUS_CODE_PROTOCOL {
 EFI_REPORT_STATUS_CODE ReportStatusCode;
} EFI_STATUS_CODE_PROTOCOL;

Parameters
ReportStatusCode

Emit a status code.

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
providing the ReportStatusCode() service with the EFI_STATUS_CODE_PROTOCOL.

Platform Initialization Specification VOLUME 2 DXE Core Interface

198 3/15/2016 Version 1.4 Errata A

EFI_STATUS_CODE_PROTOCOL.ReportStatusCode()

Summary
Provides an interface that a software module can call to report a status code.

Prototype
EFI_STATUS
(EFIAPI *EFI_REPORT_STATUS_CODE) (
 IN EFI_STATUS_CODE_TYPE Type,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN CONST EFI_GUID *CallerId OPTIONAL,
 IN CONST EFI_STATUS_CODE_DATA *Data OPTIONAL
);

Parameters
Type

Indicates the type of status code being reported. Type EFI_STATUS_CODE_TYPE
is defined in "Related Definitions” below.

Value

Describes the current status of a hardware or software entity. This included
information about the class and subclass that is used to classify the entity as well as an
operation. For progress codes, the operation is the current activity. For error codes, it
is the exception. For debug codes, it is not defined at this time. Type
EFI_STATUS_CODE_VALUE is defined in “Related Definitions” below.

Instance

The enumeration of a hardware or software entity within the system. A system may
contain multiple entities that match a class/subclass pairing. The instance
differentiates between them. An instance of 0 indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance numbers start with 1.

CallerId

This optional parameter may be used to identify the caller. This parameter allows the
status code driver to apply different rules to different callers. Type EFI_GUID is
defined in InstallProtocolInterface() in the UEFI 2.0 specification.

Data

This optional parameter may be used to pass additional data. Type
EFI_STATUS_CODE_DATA is defined in volume 3 of this specification. The
contents of this data type may have additional GUID-specific data.

Description
Various software modules including drivers can call this function to report a status code. No
disposition of the status code is guaranteed. The ReportStatusCode() function may choose to
log the status code, but this action is not required.

DXE Runtime Protocols

Version 1.4 Errata A 3/15/2016 199

It is possible that this function may get called at EFI_TPL_LEVEL_HIGH. Therefore, this
function cannot call any protocol interface functions or services (including memory allocation) that
are not guaranteed to work at EFI_TPL_LEVEL_HIGH. It should be noted that
SignalEvent() could be called by this function because it works at any TPL including
EFI_TPL_L

EVEL_HIGH. It is possible for an implementation to use events to log the status codes when the
TPL level is reduced.

ReportStatusCode() function can perform other implementation specific work, but that is not
specified in the architecture document.

In case of an error, the caller can specify the severity. In most cases, the entity that reports the error
may not have a platform wide view and may not be able to accurately assess the impact of the error
condition. The DXE driver that produces the Status Code Protocol,
EFI_STATUS_CODE_PROTOCOL, is responsible for assessing the true severity level based on the
reported severity and other information. This DXE driver may perform platform specific actions
based on the type and severity of the status code being reported.

If Data is present, the Status Code Protocol driver treats it as read only data. The Status Code
Protocol driver must copy Data to a local buffer in an atomic operation before performing any
other actions. This is necessary to make this function re-entrant. The size of the local buffer may be
limited. As a result, some of the Data can be lost. The size of the local buffer should at least be 256
bytes in size. Larger buffers will reduce the probability of losing part of the Data. Note than
multiple status codes may be reported at elevated TPL levels before the TPL level is reduced.
Allocating multiple local buffers may reduce the probability losing status codes at elevated TPL
levels. If all of the local buffers are consumed, then this service may not be able to perform the
platform specific action required by the status code being reported. As a result, if all the local
buffers are consumed, the behavior of this service is undefined.

If the CallerId parameter is not NULL, then it is required to point to a constant GUID. In other
words, the caller may not reuse or release the buffer pointed to by CallerId.

Related Definitions
//
// Status Code Type Definition
//
typedef UINT32 EFI_STATUS_CODE_TYPE;

//
// A Status Code Type is made up of the code type and severity
// All values masked by EFI_STATUS_CODE_RESERVED_MASK are
// reserved for use by this specification.
//
#define EFI_STATUS_CODE_TYPE_MASK 0x000000FF
#define EFI_STATUS_CODE_SEVERITY_MASK 0xFF000000
#define EFI_STATUS_CODE_RESERVED_MASK 0x00FFFF00

//
// Definition of code types, all other values masked by

Platform Initialization Specification VOLUME 2 DXE Core Interface

200 3/15/2016 Version 1.4 Errata A

// EFI_STATUS_CODE_TYPE_MASK are reserved for use by
// this specification.
//
#define EFI_PROGRESS_CODE 0x00000001
#define EFI_ERROR_CODE 0x00000002
#define EFI_DEBUG_CODE 0x00000003

//
// Definitions of severities, all other values masked by
// EFI_STATUS_CODE_SEVERITY_MASK are reserved for use by
// this specification.
// Uncontained errors are major errors that could not contained
// to the specific component that is reporting the error
// For example, if a memory error was not detected early enough,
// the bad data could be consumed by other drivers.
//
#define EFI_ERROR_MINOR 0x40000000
#define EFI_ERROR_MAJOR 0x80000000
#define EFI_ERROR_UNRECOVERED 0x90000000
#define EFI_ERROR_UNCONTAINED 0xa0000000

//
// Status Code Value Definition
//
typedef UINT32 EFI_STATUS_CODE_VALUE;

//
// A Status Code Value is made up of the class, subclass, and
// an operation.
//
#define EFI_STATUS_CODE_CLASS_MASK 0xFF000000
#define EFI_STATUS_CODE_SUBCLASS_MASK 0x00FF0000
#define EFI_STATUS_CODE_OPERATION_MASK 0x0000FFFF

Parameters
HeaderSize

The size of the structure. This is specified to enable future expansion.

Size

The size of the data in bytes. This does not include the size of the header structure.

Type

The GUID defining the type of the data.

DXE Runtime Protocols

Version 1.4 Errata A 3/15/2016 201

Status Codes Returned

EFI_SUCCESS The function completed successfully

EFI_DEVICE_ERROR The function should not be completed due to a device error.

Platform Initialization Specification VOLUME 2 DXE Core Interface

202 3/15/2016 Version 1.4 Errata A

Version 1.4 Errata A 3/15/2016 203

15
Dependency Expression Grammar

15.1 Dependency Expression Grammar
This topic contains an example BNF grammar for a DXE driver dependency expression compiler
that converts a dependency expression source file into a dependency section of a DXE driver stored
in a firmware volume.

15.2 Example Dependency Expression BNF Grammar
 <depex> ::= BEFORE <guid>
 | AFTER <guid>
 | SOR <bool>
 | <bool>
 <bool> ::= <bool> AND <term>
 | <bool> OR <term>
 | <term>
 <term> ::= NOT <factor>
 | <factor>
 <factor> ::= <bool>
 | TRUE
 | FALSE
 | GUID
 | END
 <guid> ::= ‘{‘ <hex32> ‘,’ <hex16> ‘,’ <hex16> ‘,’
 <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’
 <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’ <hex8> ’}’
 <hex32> ::= <hexprefix> <hexvalue>
 <hex16> ::= <hexprefix> <hexvalue>
 <hex8> ::= <hexprefix> <hexvalue>
 <hexprefix>::= ‘0’ ‘x’
 | ‘0’ ‘X’
 <hexvalue> ::= <hexdigit> <hexvalue>
 | <hexdigit>
 <hexdigit> ::= [0-9]
 | [a-f]
 | [A-F]

Platform Initialization Specification VOLUME 2 DXE Core Interface

204 3/15/2016 Version 1.4 Errata A

15.3 Sample Dependency Expressions
The following contains three examples of source statements using the BNF grammar from above
along with the opcodes, operands, and binary encoding that a dependency expression compiler
would generate from these source statements.

Dependency Expression Grammar

Version 1.4 Errata A 3/15/2016 205

//
// Source
//
EFI_CPU_IO_PROTOCOL_GUID AND EFI_CPU_ARCH_PROTOCOL_GUID END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 02 PUSH
0x01 : 26 25 73 b0 c8 38 40 4b EFI_CPU_IO_PROTOCOL_GUID
 88 77 61 c7 b0 6a ac 45
0x11 : 02 PUSH
0x12 : b1 cc ba 26 42 6f d4 11 EFI_CPU_ARCH_PROTOCOL_GUID
 bc e7 00 80 c7 3c 88 81
0x22 : 03 AND
0x23 : 08 END

//
// Source
//
AFTER (EFI_CPU_DRIVER_FILE_NAME_GUID) END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 01 AFTER
0x01 : 93 e5 7b 98 43 16 0b 45 EFI_CPU_DRIVER_FILE_NAME_GUID
 be 4f 8f 07 66 6e 36 56
0x11 : 08 END

//
// Source
//
SOR EFI_CPU_IO_PROTOCOL_GUID END

//
// Opcodes, Operands and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================

Platform Initialization Specification VOLUME 2 DXE Core Interface

206 3/15/2016 Version 1.4 Errata A

===
0x00 : 09 SOR
0x01 : 02 PUSH
0x02 : b1 cc ba 26 42 6f d4 11 EFI_CPU_IO_PROTOCOL_GUID
 bc e7 00 80 c7 3c 88 81
0x12 : 03 END

Version 1.4 Errata A 3/15/2016 207

Appendix A
Error Codes

 #define DXE_ERROR(a) (MAX_BIT|MAX_BIT >> 2 | (a))

EFI_REQUEST_UNLOAD_IMAGE DXE_ERROR (1) If this value is returned by an EFI image, then
the image should be unloaded.

EFI_NOT_AVAILABLE_YET DXE_ERROR (2) If this value is returned by an API, it means the
capability is not yet installed/available/ready to
use.

Platform Initialization Specification VOLUME 2 DXE Core Interface

208 3/15/2016 Version 1.4 Errata A

Version 1.4 Errata A 3/15/2016 209

Appendix B
GUID Definitions

B.1 DXE Services Table GUID
#define DXE_SERVICES_TABLE_GUID \
 {0x5ad34ba,0x6f02,0x4214,0x95,0x2e,0x4d,0xa0,
 0x39,0x8e,0x2b,0xb9}

B.2 HOB List GUID
#define HOB_LIST_GUID \
 {0x7739f24c,0x93d7,0x11d4,0x9a,0x3a,0x0,0x90,\
 0x27,0x3f,0xc1,0x4d}

Platform Initialization Specification VOLUME 2 DXE Core Interface

210 3/15/2016 Version 1.4 Errata A

	Revision History
	Contents
	Figures
	Tables
	1 Introduction
	1.1 Overview
	1.2 Organization of the DXE CIS
	1.3 Target Audience
	1.4 Conventions Used in this Document
	1.4.1 Data Structure Descriptions
	1.4.2 Protocol Descriptions
	1.4.3 Procedure Descriptions
	1.4.4 Instruction Descriptions
	1.4.5 Pseudo-Code Conventions
	1.4.6 Typographic Conventions

	1.5 Requirements
	1.6 Conventions used in this document
	1.6.1 Number formats
	1.6.2 Binary prefixes

	2 Overview
	2.1 Driver Execution Environment (DXE) Phase
	2.2 UEFI System Table
	2.2.1 Overview
	2.2.2 UEFI Boot Services Table
	2.2.3 UEFI Runtime Services Table
	2.2.4 DXE Services Table

	2.3 DXE Foundation
	2.4 DXE Dispatcher
	2.5 DXE Drivers
	2.6 DXE Architectural Protocols
	2.7 Runtime Protocol

	3 Boot Manager
	3.1 Boot Manager

	4 UEFI System Table
	4.1 DXE Services Table
	4.2 UEFI Image Entry Point Examples
	4.2.1 UEFI Application Example
	4.2.2 Non-UEFI Driver Model Example (Resident in Memory)
	4.2.3 Non-UEFI Driver Model Example (Nonresident in Memory)
	4.2.4 UEFI Driver Model Example
	4.2.5 UEFI Driver Model Example (Unloadable)
	4.2.6 UEFI Driver Model Example (Multiple Instances)

	5 Services - Boot Services
	5.1 Extensions to UEFI Boot Service Event Usage
	5.1.1 CreateEvent
	5.1.2 Pre-Defined Event Groups
	5.1.3 Additions to LoadImage()

	6 Runtime Capabilities
	6.1 Additional Runtime Protocol
	6.1.1 Status Code Services

	7 Services - DXE Services
	7.1 Introduction
	7.2 Global Coherency Domain Services
	7.2.1 Global Coherency Domain (GCD) Services Overview
	7.2.2 GCD Memory Resources
	7.2.3 GCD I/O Resources
	7.2.4 Global Coherency Domain Services
	AddMemorySpace()
	AllocateMemorySpace()
	FreeMemorySpace()
	RemoveMemorySpace()
	GetMemorySpaceDescriptor()
	SetMemorySpaceAttributes()
	SetMemorySpaceCapabilities()
	GetMemorySpaceMap()
	AddIoSpace()
	AllocateIoSpace()
	FreeIoSpace()
	RemoveIoSpace()
	GetIoSpaceDescriptor()
	GetIoSpaceMap()

	7.3 Dispatcher Services
	Dispatch()
	Schedule()
	Trust()
	ProcessFirmwareVolume()

	8 Protocols - Device Path Protocol
	8.1 Introduction
	8.2 Firmware Volume Media Device Path
	8.3 Firmware File Media Device Path

	9 DXE Foundation
	9.1 Introduction
	9.2 Hand-Off Block (HOB) List
	9.3 DXE Foundation Data Structures
	9.4 Required DXE Foundation Components
	9.5 Handing Control to DXE Dispatcher
	9.6 DXE Foundation Entry Point
	9.6.1 DXE_ENTRY_POINT

	9.7 Dependencies
	9.7.1 UEFI Boot Services Dependencies
	9.7.2 UEFI Runtime Services Dependencies
	9.7.3 DXE Services Dependencies

	9.8 HOB Translations
	9.8.1 HOB Translations Overview
	9.8.2 PHIT HOB
	9.8.3 CPU HOB
	9.8.4 Resource Descriptor HOBs
	9.8.5 Firmware Volume HOBs
	9.8.6 Memory Allocation HOBs
	9.8.7 GUID Extension HOBs

	10 DXE Dispatcher
	10.1 Introduction
	10.2 Requirements
	10.3 The A Priori File
	10.4 Firmware Volume Image Files
	10.5 Dependency Expressions
	10.6 Dependency Expressions Overview
	10.7 Dependency Expression Instruction Set
	BEFORE
	AFTER
	PUSH
	AND
	OR
	NOT
	TRUE
	FALSE
	END
	SOR

	10.8 Dependency Expression with No Dependencies
	10.9 Empty Dependency Expressions
	10.10 Dependency Expression Reverse Polish Notation (RPN)
	10.11 DXE Dispatcher State Machine
	10.12 Example Orderings
	10.13 Security Considerations

	11 DXE Drivers
	11.1 Introduction
	11.2 Classes of DXE Drivers
	11.2.1 Early DXE Drivers
	11.2.2 DXE Drivers that Follow the UEFI Driver Model
	11.2.3 Additional Classifications

	12 DXE Architectural Protocols
	12.1 Introduction
	12.2 Boot Device Selection (BDS) Architectural Protocol
	EFI_BDS_ARCH_PROTOCOL.Entry()

	12.3 CPU Architectural Protocol
	EFI_CPU_ARCH_PROTOCOL.FlushDataCache()
	EFI_CPU_ARCH_PROTOCOL.EnableInterrupt()
	EFI_CPU_ARCH_PROTOCOL.DisableInterrupt()
	EFI_CPU_ARCH_PROTOCOL.GetInterruptState()
	EFI_CPU_ARCH_PROTOCOL.Init()
	EFI_CPU_ARCH_PROTOCOL.RegisterInterruptHandler()
	EFI_CPU_ARCH_PROTOCOL.GetTimerValue()
	EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes()

	12.4 Metronome Architectural Protocol
	EFI_METRONOME_ARCH_PROTOCOL.WaitForTick()

	12.5 Monotonic Counter Architectural Protocol
	12.6 Real Time Clock Architectural Protocol
	12.7 Reset Architectural Protocol
	12.8 Runtime Architectural Protocol
	12.9 Security Architectural Protocols
	12.9.1 Security Architectural Protocol
	EFI_SECURITY_ARCH_PROTOCOL.FileAuthenticationState()

	12.9.2 Security2 Architectural Protocol
	EFI_SECURITY2_ARCH_PROTOCOL.FileAuthentication()

	12.10 Timer Architectural Protocol
	EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()
	EFI_TIMER_ARCH_PROTOCOL.SetTimerPeriod()
	EFI_TIMER_ARCH_PROTOCOL.GetTimerPeriod()
	EFI_TIMER_ARCH_PROTOCOL.GenerateSoftInterrupt()

	12.11 Variable Architectural Protocol
	12.12 Variable Write Architectural Protocol
	12.13 EFI Capsule Architectural Protocol
	12.14 Watchdog Timer Architectural Protocol
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.RegisterHandler()
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.SetTimerPeriod()
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.GetTimerPeriod()

	13 DXE Boot Services Protocol
	13.1 Overview
	13.2 Conventions and Abbreviations
	13.3 MP Services Protocol Overview
	13.4 MP Services Protocol
	EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors()
	EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo()
	EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
	EFI_MP_SERVICES_PROTOCOL.StartupThisAP()
	EFI_MP_SERVICES_PROTOCOL.SwitchBSP()
	EFI_MP_SERVICES_PROTOCOL.EnableDisableAP()
	EFI_MP_SERVICES_PROTOCOL.WhoAmI()

	14 DXE Runtime Protocols
	14.1 Introduction
	14.2 Status Code Runtime Protocol
	EFI_STATUS_CODE_PROTOCOL.ReportStatusCode()

	15 Dependency Expression Grammar
	15.1 Dependency Expression Grammar
	15.2 Example Dependency Expression BNF Grammar
	15.3 Sample Dependency Expressions

	Appendix A Error Codes
	Appendix B GUID Definitions
	B.1 DXE Services Table GUID
	B.2 HOB List GUID

